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EXECUTIVE SUMMARY

1. GENERAL STRATEGY

The overall program embraces property profiles, manufacturing, design

and sensor development (Fig. 1) consistent with a concurrent engineering

philosophy. For this purpose, the program has created networks with the

other composites activities. Manufacturing research on MMCs is strongly

coupled with the 3M Model Factory and with the DARPA consolidation team.

Major links with Corning and SEP are being established for CMC

manufacturing. Design Team activities are coordinated by exchange visits, in

February/March, to Pratt and Whitney, General Electric, McDonnell

Douglas and Corning. Other visits and exchanges are being discussed.

These visits serve both as a critique of the research plan and as a means of

disseminating the knowledge acquired in 1992.

The program strategy concerned with design attempts to provide a

balance of effort between properties and design by having studies of

mechanisms and property profiles, which intersect with a focused activity

devoted to design problems (Fig. 2). The latter includes two foci, one on

MMCs and one on CMCs. Each focus reflects differences in the property

emphases required for design. The intersections with the mechanism

studies ensure that commonalties in behavior continue to be identified, and

also facilitate the efficient transfer of models between MMCs and CMCs.
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2. PROPERTY PROFILES

Each research activity concerned with properties begins with

experiments that identify the principal property-con trolling phenomena.

Models are then developed that relate the physical response to constituent

propeiiies. These models, when validated, provide the constitutive laws

required for calculating stress redistribution, failure and damage

progression. They also provide a solid physics and mechanics

understanding, which can be used to judge the effectiveness of the

simplified procedures needed for design purposes.

2.1 Fatigue

Studies of the propagaion of dominant mode I fatigue cracks from

notches in MMCs, including the role of fiber bridging and fiber failure, have

been comprehensively addressed (Zok, McMeeking). Software programs that

include these effects have been developed. These are being transferred to

Pratt and Whitney and KAMAN Sciences. The effects of thermal cycling on

crack growth in MMCs have also been modelled (McMeeking). The results

highlight the opposing effects of cycling on matrix crack growth and fiber

failure (the fatigue threshold), when thermal cycles are superposed onto load

cycles. Notably, matrix crack growth is enhanced by out-of-phase

thermomechanical cycling, but fiber failure is suppressed (and vice versa for

in-phase cycling). Experimental studies that examine these predictions are

planned (Zok).

Studies have also been conducted on systems that exhibit multiple

matrix cracking (Zok). The tensile stress-strain behavior of composites

containing such cracks is analogous to the behavior of unidirectional CMCs
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under monotonic tensile loading. As a result, models developed to describe

the tensile response of the CMCs have found utility in describing the MMCs.

However, two important differences in the two classes of composite have

been identified and are presently being addressed. The first deals with the

nature of the crack patterns. In the CMCs, the cracks are more or less

uniformly spaced and generally span across the entire composite section. In

contrast, the MMCs exhibit a broader distribution of crack sizes, many of

which are short compared with the specimen dimensions. Methodologies for

measurement and interpretation of crack densities in MMCs are being

developed. The second problem deals with degradation in the interfacial

sliding properties with cyclic sliding in the MMCs. Such degradation is

presently being studied using fiber push-out tests in fatigued specimens.

Thermal fatigue studies on MMCs subject to transverse loading have

been performed and have established the conditions that allow shakedown

(Leckie). The shakedown range is found to be strongly influenced by the

extent of matrix creep, which defines a temperature limitation on the use of

the material. The eventual outcome of this activity would be the

specification of parameters that ensure shakedown and avoid ratcheting.

The next challenge for MMCs concern the quantification of transitions

in fatigue behavier, esp,-ially those foiind at higher temperatures. These

include multiple matrix cracking and shear band formation. Experimental

studies are in progress which will be used to establish a mechanism map.

The map, when developed, would explicitly identify the transitions (Zok). The

analogous behavior found in CMCs will facilitate this development. Other

high temperature phenomena to be explored include changes in the

interfacial sliding behavior due to both relaxations in the thermal residual

stresses and the growth of reaction products near the fiber-matrix interface.
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Fatigue damage studies on 2-D CMCs will focus on interface and fiber

degradation phenomena, especially at elevated temperatures (Evans. Zok).

Cyclic loading into the stress range at which matrix craiks exist is known to

modify the interface sliding stress and may weaken the fibers. These

degradation effects can be distinguished. because they change the

hysteresis loop and reduce the UTS. respectively. Experiments that probe

these material responses are planned. In addition, models that include the

influence of cyclic fiber failure and pull-out on fatigue damage will be

developed (Suo).

2.2 Matrix Cracking

Models of the plastic strain and modulus changes cati'ed by various

modes of matrix cracking have been developed. These solutions have

provided a rationale for experimental studies on the tensile and shear

behavior of CMCs and on the fatigue of MMCs (Hutchinson, Zok., Evans.

Suo, Budiansky, MeMeeking). The information has been used in two distinct

ways. (i) Test methodologies have been devised that relate

stress/displacement measurements to constituent properties (Table I).

(ii) Stress/strain curves and matrix crack evolution have been simulated for

specific combinations of constituent properties.

The development of the procedures and their implementation are still in

progress. Independent solutions have been established for matrix cracks in

00 plies and 90" plies upon tensile loading. The former has been

experimentally validated on 1-D materials (SiC/SiC and SiC/CIAS).

Measurements of plastic strain, hysteresis loops and crack densities have

been checked a iinst the models for consistency.
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TABLE I

Relevant Constituent Properties and Measurement Methods

CONSTITUENT PROPERTY MEASUREMENT

e Pull-Out Length, h

* Saturation Crack Spacing. ls
Sliding Stress, x

& Hysteresis Loop, 5E 1/2

* Unloading Modulus. EL

* Fracture Mirrors
Characteristic Strength, S.. m

* Ultimate Strength. S

e Bilayer Distortion

Misfit Strain. Q2 (q) * Permanent Strain, Ep

* Residual Crack Opening

* Monolithic Material

Matrix Fracture Energy, Fm * Saturation Crack Spacing. s

e Matrix Cracking Stress, •mc

* Permanent Strain. £-p
Debond Energy. r'j

e Residual Crack Opening
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The next challenge is to couple the models together in order to simulate

the evolution of matrix cracks in 2-D materials, subject to tensile loading

(Hutchinson. Budianskv). Related effects on the ultimate tensile strength

caused by stress concentrations in the fibers in the presence of matrix

cracks, would also be evaluated. Experimental measurements of

stress/strain behaior in 2-D CMCs, with concurrent observations of matrix

crack evolution, would be used to guide and validate such models (Evans.

Kedward).

2.3 Constitutive Equations

Constitutive equations provide the link between material behavior at

the meso-scale and the performance of engineering components. The

equations can be established from the results of uniaxial and transverse

tensile tests together with in-plane shear loading. For a complete

formulation, which describes accurately the growth of failure mechanisms

and the conditions of failure at the meso-scale, it is also necessary to

perform calculations which are valid at the micro-scale.

These procedures have been completed for metal-matrix composites

(Jansson, Leckie), and the resulting constitutive equations are operational

in the ABAQUS finite element code. The behavior of simple panels

penetrated by circular holes have been studied and the results await

comparison with experiments which are planned for the coming year. The

constitutive equations are formulated in terms of state variables which

include the hardening tensors and damage state variables which describe

debonding at the interface and void growth in the matrix. The format is

sufficiently general to allow the inclusion of failure mechanisms such as

environmental attack as the appropriate understanding is available. For
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example, the effect of matrix and fiber creep mechanisms (Aravas) have also

been introduced into ABAQUS, and it is proposed to extend the creep

conditions to include the effects of variable loading and temperature.

A similar approach has been taken towards the modulus of CMCs. In

this case, efforts have been made to include the influence of matrix

cracking, in-plane shearing and fiber breakage. The latter consideration is

based on the global load sharing model {Hayhurst). The equations are also

available in ABAQUS. At present. matrix cracking is introduced by

assuming a matrix stress accompanied by an increase of strain. However,

based on the more recent understanding of the growth of matrix cracks

(above) it is intended to introduce these mechanisms into the constitutive

equations for CMCs.

2.4 Creep

The emphases of the creep investiyations have been on the anisotropic

characteristics of unidirectional layers in which the fibers are elastic, but

the matrix creeps. Experiments and models of the longitudinal creep

properties of such materials have been initiated (McMeeking, Leckie. Evans.

Zok, Aravas). The critical issues in this orientation concern the incidence of

fiber failure and the subsequent sliding response of the interface. A

modelling effort has established an approach that allows the stochastic

evolution of fiber failure to occur as stress is transferred onto the fibers by

matrix creep (McMeeking). This approach leads to creep rates with a large

power law exponent. Various attempts are underway to incorporate the

interface sliding initiated by fiber breaks and to introduce sliding into the

creep rate formulation. Experiments being performed on unidirectional Ti

matrix materials are examining the incidence of fiber failures on the creep

9



deformation (Evans. Leckie, Zok). These results will guide the modelling

effort concerned with interface sliding effects. Insight will also be gained

about fiber failure stochastics during creep. especially differences from room

temperature behavior.

The transverse creep properties are expected to have direct analogies

with composite deformation for a power law hardening matrix (Section 2.3).

In particular. the same effects of debonding and matrix damages arise and

can be incorporated in an equivalent manner (Leckie. Aravas). Testing is

being performed on Ti MMCs and on SiC/CAS to validate the models.

Experiments on Ti-matrix 07/90° cross-ply composites are planned.

Creep models appropriate to cross-ply materials will be developed by

combining those corresponding to the unidirectional materials in the

longitudinal and transverse orientations, using a rule-of-mixtures approach.

Such an approach is expected to be adequate for loadings in which the

principal stresses coincide with the fiber axes. Alternate approaches will be

sought to describe the material response in other orientations.

Some CMCs contain fibers that creep more extensively than the matrix.

This creep deformation has been found to elevate the stress in the matrix

and cause time dependent evolution of matrix cracks. This coupled process

results In continuous creep deformation with relatively low creep ductility.

Experiments on such materials are continuing (Evans, Leckie) and a

modelling effort will be initiated (Suo). The models would include load

transfer into the matrix by creeping fibers, with sliding interfaces, leading to

enhanced matrix cracking.
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2.5 Tensile Strength

The ultimate strength (UTS) of both CMCs and MMCs (as well as fatigue

and creep thresholds) is dominated by fiber failure. With thp global load

sharing (GLS) concept of fiber failure now well established, the recent

emphasis has been on defining the constituent properties needed to ensure

GLS. The approach has been to perform local load sharing calculations and

then compare experimental UTS data with the GLS predictions (Curtin.

Evans, Leckie). The situation is unresolved. However, initial calculations on

CMCs (Curtin) and MMCs (Evans) have provided some insight. Two key

remaining issues concern the magnitude of the stress concentration in

intact fibers caused by matrix cracks and the role of fiber pull-out in

alleviating those stresses. Calculations of these effects are planned

(Budiansky, Suo).

Degradation of the fiber strength upon either high temperature (creep)

testing. atmospheric exposure, or fatigue are other topics of interest.

Rupture testing performed under these conditions will be assessed in terms

of degradation in fiber properties.

3. DESIGN TEAMS

3.1 The Approach

The overall philosophy of the design effort is to eventually combine

material models, with a materials selector, and a data base, within a unified

software package (Prinz). One example of a composites data base is that

developed for MMCs by KAMAN Sciences. which forms the basis for a

potential collaboration. The materials selector has already been developed
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for monolithic materials (Ashby) and is available for purchase. This selector

requires expansion to incorporate phenomena that have special significance

for high temperature composites, including creep and thermal fatigue. These

new features will be developed and included in the advanced selector

software (Ashby).

The modelling approach is illustrated in Table II. Failure mechanisms

and their effect on material behavior have been introduced into constitutive

equations. The stress, strain and damage fields which develop in

components during the cycles of loading and temperature can then be

computed. Experiments shall be performed on simple components such as

holes in plates, and comparison made with the computational predictions.

Since constitutive equations are modeled using the results of coupon tests,

it is likely that additional failure modes shall come to light during

component testing. These mechanisms shall be studied and the appropriate

mechanics developed so that their influence is correctly factored into the

constitutive equations. In this way, increased confidence in the reliability of

the constitutive equations can be established in a systematic way.

In practice, it is most probable that the constitutive equations are too

complex for application at the creative level of the design process. It is then

that simple but reliable procedures are of greater use. Some success has

been achieved in this rega -d for MMCs subjected to cyclic mechanical and

thermal loading (Jansson, Ponter. Leckie). as well as for strength

calculations of CMC panels penetrated by holes (Suo) and the fatigue of

MMCs (Zok, McMeeking). In all cases simplifications are introduced after a

complete and reliable analysis has been completed which provides a

standard against which the effects of simplification can be assessed.
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Design Procedure including
Data

Approximate Design
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Stress Allowables
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The Modelling Approach



3.2 Ceramic Matrix Composite Design

The design effort on CMCs will have its major focus oii pin-loaded holes

used for attachments (Fig. 3). A smaller activity, expected to expand in

1994, will address delamination cracking. The hole design includes several

related topics. Each topic is concerned with aspects of constitutive law

development (Table III), highlighted during the study group. Combined

experimental and modelling efforts on the tensile properties of CMCC: have

established that the plastic strains are dominated by matrix cracks in the 0*

plies. The matrix cracking models developed in the program demonstrate

that these strains are governed by four independent constituent properties

[(Table I) T, Ti, K2 and rm] which combine and interrelate through five non-

dimensional parameters (Table lV). This modelling background suggests a

concept for using model-based knowledge to develop constitutive laws. The

following steps are involved (Table Ill). (i) A model-based methodology for

inferring the constituent properties of unidirectional CMCs from

macroscopic stress/strain behavior has been devised and is being

experimentally tested on a range of materials (Evans). (ii) Upon validation.

the models would allow stress/strain curves to be simulated (Hutchinson).

This capability would facilitate a sensitivity study to be performed, in order

to determine the minimum number of independent parameters that

adequately represent the constitutive law. A strictly empirical law would

require 3 parameters (yield strength, hardening rate and unloading

modulus). Consequently, the objective might be to seek 3 combinations of

the 4 constituent properties. (iii) Experiments would be performed and

models developed that establish the matrix cracking sequence in 2-D

materials (Hutchinson, Evans, Kedward). These would be conducted on

14
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TABLE WV

Summary of Non-Dimensional Coefficients

Ab = [f/(1-f)]2 (E1 EL/E2)(ao t/RSu), Flaw Index for Bridging

Ap = (a, /h)(Sp /EL), Flaw Index for Pull-Out

D = rm(1-f) E Em /f T2 EL R, Crack Spacing Index

H = b 2 (1-alf)2 R• /4jr Ern f 2 , Hysteresis Index

I = Up /Em Q, Misfit Index

M1f = 6tFm j2 E1 /(1-f) REL, Matrix Cracking Index

Q = Epf Q/EL(1-v), Residual Stress Index

At = (1/c, 0) Ei/Em R, Debond Index
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CMCs with a range of different constituent properties and fiber

architectures. The plastic strains would be related to constituent properties

by adapting the 1-D ..odels.

The in-plane shear behavior will be characterized by performing

experiments and developing models of matrix cracking that govern the

plastic shear strain in 2-D CMC (Evans, Hutchinson, Bao). The information

will be used to establish the constitutive laws for in-plane shear, as well as

interlaminar shear. For continuity of interpolation between tension and

shear, the shear models will include the same constituent properties as

those used to represent the tensile behavior.

The model-based constitutive laws, based on matrix damage, will be

built into a CDM (continuum damage mechanics) formulation, compatible

with finite element codes (hayhurst). Computations will be performed to

explore stress redistribution around holes and other strain concentration

sites. The calculations will establish visualizations of stress evolution that

can be compared with experimental measurements performed using the

SPATE method, as well as by Moird interferometry (Mackin, Evans). These

experiments will be on specimens with notches and holes, loaded in tension.

The comparisons between the measured and calculated stress patterns will

represent the ultimate validation of the constitutive law. The ,oomposite

codes, when validated, will be made available to industry.

Some preliminary experimental work will be performed on pin-loaded

holes. Damage patterns will be monitored and stress redistribution effects

assessed using SPATE (Kedward, Evans, Mackin). These experiments will be

conducted on SiC/CAS and SiC/C. The results will provide the focus for

future CDM computations, based on the constitutive law for the material.

18



Smaller scale activities will involve basic aspects of stress redistribution

around holes caused by fatigue and creep damage, using the experience

gained from the matrix cracking studies. Some experimental measurements

of these effects will be performed using SPATE (Zok. Evans).

Some delamination crack growth measurements and calculations are

also envisaged (Ashby, Kedward. Hutchinson). Cantilever beam and

C-specimens will be used for this purpose (Fig. 4). During such tests, crack

growth, multiple cracking and stiffness changes will be addressed. Models of

bridging by inclined fibers will be developed (Ashby) and used for

interpretation.

3.3 Metal Matrix Composite Design

The 3D constitutive equations for MMCs are now available for use in

the ABAQUS finite element code, and the immediate task is to use these

equations to predict the behavior of representative components (Leckie). One

such system is a ring-type structure which is being studied together with

Pratt and Whitney. Clearly no experimental verification is possible with a

component of this scale, but the experience of Pratt and Whitney shall

provide invaluable input on the effectiveness of the calculations. A

component sufficiently simple to be tested is the panel penetrated by holes.

The holes shall be both unloaded and loaded (Jansson). and it is expected to

include the effects of cyclic mechanical and thermal loading.

It is proposed to develop simplified procedures which are based on

shakedown procedures (Jansson, Leckie). Demonstrations have already

been made of the effectiveness of the Gohfeld method (which uses only

simple calculations) in representing the behavior of MMCs subjected to

cyclic thermal loading.
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During the complex histories of stress and temperature. it is know, xn

that the matrix-fiber interface properties change. Fatigue loading (Zok) is

know to decrease the interface sliding stress. Transverse creep appears to

cause matrix-fiber debonding (Jansson). which might result in loss of the

ability to transfer stress between matrix and fiber. It is intended to study

this effect of transverse creep on the integrity of the longitudinal strength of

the material by performing tests on panels which shall allow rotation of the

stress fields. A good understanding now exists of the fatigue properties of

MMCs (Zok). It is intended to extend the ideas developed from earlier

theoretical studies (McMeeking. Evans) to include cyclic thermal effects and

experimental programs on holes in plates.

4. MANUFACTURING

The activities in processing and manufacturing have had the following

foci:
"* Matrix development to address specific requirements identified by the

design problems, particularly first matrix cracking in CMCs (Lange)

and creep strengthening in MMC/IMCs (Levi, Lucas).

" Hybrid architectures which offer possible solutions to environmental

degradation and thermal shock problems (Evans. Lange. Leckie, Levi,

Yang. Zok).

" Software development that predicts and controls fiber damage and

interface properties during densification (Wadley).

" Processing techniques to generate model MMC sub-elements (Leckie.

Levi. Yang).

21



4.1 Metal Matrix Composites

Work on MMC matrix development has focused on dispersion

strengthening approaches to increase the transverse tensile and creep

strength of 1-D and 2-D fiber architectures. The initial work has emphasized

a model system, Cu/A12 0 3 , wherein dispersoids are produced by internal

oxidation of a dilute Cu-Al alloy deposited by PVD onto sapphire fibers.

These are subsequently consolidated by HIP'ing. Specimens with fiber

volume fractions of 0.3 __ f_< 0.5 and 2-3% y-AI2 0 3 dispersoids (- 20 nm in

size) have been produced in this manner and will be tested to assess their

transverse creep behavior. The new emphasis will be on higher temperature

matrices based on TiB dispersoids in Ti-(Cr/Mo)-B alloys (Levi). Initial

solidification studies have demonstrated the potential of these materials as

in-situ composites. Efforts are underway to develop sputtering capabilities to

implement this concept.

Fiber damage during densification of composite prepregs generated by

plasma-spray (GE) and PVD (3M) have also been emphasized (Wadley).

Interdiffusion studies coupled with push-out tests have been used to study

the evolution of reaction layers in Ti/SiC composites and their effect on the

relevant interfacial properties as a function of process parametc-.s.

Additional efforts under other programs have focused on developing

predictive models for fiber breakage during densification. The interdiffusion

and breakage models are being incorporated into software that predicts

pressure-temperature paths, which simultaneously minimize fiber damage

and control the interface properties.

The feasibility of producing MMC sub-elements consisting of fiber

reinforced rings (1-D) and tubes (2-D) has been demonstrated by using
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liquid metal infiltration of Al alloy matrices (Levi). These are presently

undergoing testing in combined tension/torsion modes. Future efforts will

be directed toward extending the technique to othei shapes (e.g.. plates with

reinforced holes), as well as devising methods to modify the (currently

strong) interfaces. The identification of methods that provide the appropriate

interfacial debonding/sliding characteristics should enable the use of these

composites as model systems for higher temperature MMCs. such as Ti.

4.2 Intermetallic Matrix Composites

The focus of the IMC processing activities has been on the synthesis of

MoSi2 /P-SiCp composites by solidification processing. These materials are of

interest as potential matrices for fiber composites. Significant progress was

made in the elucidation of the relevant Mo-Si-C phase equilibria, the growrth

mechanisms of SiC from the melt and their impact on reinforcement

morphology, as well as the orientation relationships between matrix and

reinforcements, and the interfacial structure. An amorphous C layer, <5 nm

thick, was found at the MoSi2 /SiC interface in the as cast condition, and

persisted after 12 h heat treatments at 1500'C. This Interfacial layer has

been reproduced in ca-SiCp/(MoSi 2 + C) composites produced by powder

metallurgy techniques and was found to exhibit promising debonding and

pull-out behavior during fracture (Levi). Future efforts are aimed at

implementing this in-situ coating concept in a-SiC fiber composites.

4.3 Ceramic Matrix Composites

The processing issues for creating CMCs with high matrix strength

continue to be explored (Lange, Evans). The basic concept is to create a

strong ceramic matrix framework within a fiber preform, by means of slurry
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infiltration followed by heat treatment. This strong framework would then be

infiltrated by a polymer precursor and pyrolyzed to further densifv the

matrix. It has been demonstrated that strong matrices of Si3 N4 can be

produced using this approach (Lange). Further work will address

relationships between matrix strength and microstructure (Lange, Evans).

4.4 Hybrids

These activities cover materials consisting of thin monolithic ceramic

layers alternatir ,th layers containing high strength fibers bonded by a

glass or metallic binder. The primary motivation behind this concept is the

potential for manufacturing shapes that have a high resistance to

environmental degradation and also have good thermal shock resistance.

The concept has been demonstrated using alumina plates and graphite

reinforced polymer prepregs (Lange). The availability of glass-ceramic

bonded SiCf prepregs and tape-cast SiC plates has facilitated the extension

of this technique to high temperature systems (Lange). Future assessment

will address new crack control concepts. These concepts would prevent

damage from propagating into the fiber reinforced layers, especially upon

thermal loading (Zok, Lange). If successful, this concept would allow the

development of hybrid CMCs which impart resistance to environmental

degradation, as well as high thermal strain tolerance.

Preliminary work has been performed on laminates consisting of

alumina plates and sapphire-fiber reinforced Cu monotapes (Levi). The latter

are produced by deposition of Cu on individual fibers which are

subsequently aligned and bonded by hot pressing between two Cu foils.

After suitable surface preparation. the alumina/monotape assemblies are
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bonded by hot pressing. Future work is aimed at implementing the concept

with Ni based alloys.

5. SENSORS

The principal challenge being addressed is the non-destructive and

non-evasive measurement of stresses in composites (Clarke, Wadley). The

motivation is to make detailed measurements of stresses in components for

incorporation into evolving design models, as well as validation of the stress

distributions computed by finite element methods. A major emphasis has

been placed on measuring the residual stresses in sapphire fibers in various

matrices, using the recently developed technique of optical fluorescence

spectroscopy. These measurements have provided data on the distribution

of residual thermal stresses in the fiber reinforcement, as a function of

depth below the surface. This approach will be extended, in conjunction

with finite element modelling (Hutchinson), to measure the stresses during

the process of fiber pull-out from a variety of metal and ceramic matrices.

Initial experiments indicate that such in-situ measurements are feasible.

The technique will also be applied to the measurement of the stresses

in sapphire fibers located in the vicinity of pin-loaded holes in order to

understand the manner in which the stresses redistribute during loading. It

is anticipated that this measurement will provide information about the

detailed fiber loadings and also about the stresses that cause debonding of

the fibers from the matrix. Moreover, in support of the activities on thermal

ratcheting, the redistribution of stresses with thermal cycling will be

established. This will be accomplished by using the fluorescence technique

as well as Moire interferometry, based on lithographically defined features.

25



MATERIALS

u-rn

A METHODOLOGY FOR RELATING THE
TENSILE CONSTITUTIVE BEHAVIOR OF

CERAMIC MATRIX COMPOSITES TO

CONSTITUENT PROPERTIES

by

A.G. Evans, J.M. Domergue and E. Vagaggini

Materials Department
College of Engineering
University of California

Santa Barbara, California 93106-5050

KJS 3/16193



NOMENCLATURE

ai parameters found in the paper by Hutchinson and Jensen 21

ao length of unbridged matrix crack
bi parameters found in the paper by Hutchinson and Jensen 21

ci parameters found in the paper by Hutchinson and Jensen 21

f fiber volume fraction

fl fiber volume fraction in loading direction
h mean fiber pull-out length

_Ip plastic zone size
mean matrix crack spacing

"is mean saturation crack spacing
m shape parameter for fiber strength distribution
q residual stress in matrix in axial orientation

t ply thickness
2w plate width
E Young's modulus of composite

E. Young's modulus of material with matrix cracks
Ej Young's modulus of fiber

EL ply modulus in longitudinal orientation
Em Young's modulus of matrix

EL ply modulus in longitudinal orientation

Es secant modulus

ET ply modulus in transverse orientation
EL unloading modulus

Et tangent modulus

L mean crack spacing in 901 plies

Lg gauge length

Lo reference length

R fiber radius

S tensile strength

Sc characteristic fiber strength

So scale factor for fiber strength

Sp pull-out 'strength'
Su UTS subject to global load sharing

., tensile strength in presence of a flaw or notch
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T shear strength

at compliance coefficient

f3 residual stress coefficient

7 shear strain

8 displacement

8c characteristic length
8 hysteresis loop width

E strain

£ e elastic strain

E p permanent strain

E, contribution to permanent strain caused by matrix cracks

V Poisson's ratio (assumed to be the same for fiber and matrix)

X pull-out coefficient

0 stress

OR residual stress in 0/90 material along fiber axis
at lower bound stress for tunnel cracking

di debond stress

dmc matrix cracking stress

do stress acting on 00 plies in a 2-D material
dp peak stress

a, saturation stress

6Tr misfit stress

"T interface sliding resistance

X matrix cracking coefficient
r fracture energy

F1i interface debond energy

T"o dissipation associated with traction law

F-m matrix fracture energy
0 misfit strain
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ABSTRACT

A methodology for the straightforward and consistent evaluation of the

constituent properties of CMCs is summarized, based on analyses from the literature.

The results provide a constitutive law capable of simulating the stress/strain behavior

of these materials. The approach is illustrated using data for two CMCs: SiC/CAS and

SiC/SiC. The constituent properties are also used as input to mechanics procedures that

characterize stress redistribution and predict the effect of strain concentrations in

macroscopic performance.
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1. INTRODUCTION

For the structural application of ceramic matrix composites (CMCs), it is necessary

to have a methodology that prescribes the influence of strain concentrations, such as

notches, on tensile properties. Ideally, this methodology should have explicit

connections to the constituent properties (fibers, matrix, interface), such that efficient

design procedures can be implemented. This article contributes toward this objective by

surveying the tensile properties of CMCs and the mechanisms that govern their

properties, in a manner that leads to a methodology for relating macroscopic behavior

to constituent properties. A mechanics approach that addresses the influence of strain

concentrations is then summarized and compared with preliminary experimental

results.

CMCs usually have substantially lower notch sensitivity than monolithic brittle

materials1-4 and, in several cases, exhibit notch insensitive behavior.5-7 This desirable

characteristic of CMCs arises because the material may redistribute stresses around strain

concentration sites. There are two fundamental mechanisms of stress redistribution: 8-12

(i) distributed matrix cracking and (ii) fiber failure involving pull-out. An understanding

of these effects provides a basis for devising a methodology to characterize and predict

properties. In most CMCs, the Linear Elastic Fracture Mechanics (LEFM) methodology

successfully devised for metals cannot be used,2 ,8,12"14 because failure does not occur by

the propagation of a dominant mode I crack. Alternative mechanics are needed, based

on the actual mechanisms of failure. A more relevant mechanics is that based on the

Large-Scale Bridging of matrix cracks by fibers8 ,13-15 (LSBM). However, even LSBM is

inadequate. It must be augmented by Continuum Damage Mechanics (CDM)16 in order

to establish a rigorous methodology.

The basic approach has the follcwing features. An informed background needed

for progress is provided by experimental results used in conjunction with models of
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matrix cracking and fiber failure. The matrix cracking and fiber failure observations are

conducted on 2-D materials in tension and shear. Large-Scale Bridging Mechanics are

used to rationalize the observed damage mechanisms. The tensile properties measured

in the presence of holes and notches, when combined with damage observations,

establisl the mechanics approach needed to rationalize the influence of strain

concentrations.

The strategy is facilitated by devising mechanism maps that use non-dimensional

parameters, which combine the basic constituent properties listed on Table I in

mechanistically relevant ways. A list of these parameters is presented in Table II. The

most successful methodology will be that using the minimum number of constituent

properties needed to represent the constitutive behavior. At mechanism transitions, the

mechanics needed to characterize composite behavior often change. 12,17

2. BASIC RESULTS FOR 1-D MATERIALS

2.1 Phenomenology

Models for a range of damage phenomena found in 1-D CMCs, have been

established and validated by experiment. 18-40 These models provide the basis upon

which the behavior of 2-D and 3-D CMCs can be addressed. The underlying

phenomenology involves matrix cracking and fiber failure. Matrix cracks form first and

interact with predominantly intact fibers, 2,18-24 subject to interfaces that debond, at

energy ri, and then slide at a constant shear stress, t J4 This process commences at a

lower bound stress, dmc- The crack density increases with increase in stress above nmc

and may eventually attain a saturation spacing, Is. The details of crack evolution are

governed by the distribution of matrix flaws. The matrix cracks reduce the elastic

4 More rigorous debonding and sliding behaviors have been analyzed, 2' but have not vet been found
necessary for the derivation of useful constitutive laws.
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modulus, F, cause hysteresis in the presence of sliding interfaces, and also induce a

permanent strain, ;p. These matrix cracking effects are schematically illustrated in

Fig. 1. The intent is to relate these quantities to the constituent properties (Table I)

through non-dimensional parameters (Table II).

The matrix cracks may enhance the stress on the fibers and encourage fiber

failure.8,15 However, when a fiber fails, the stress does not reduce to zero everywhere

along that fiber. Load transfer can still occur through the sliding stress, T, even though

the matrix has many cracks. 25 -27 As a result, the ultimate tensile strength (UTS) may

exceed the value expected for a 'dry bundle' (fibers with no matrix). Two bounds

appear to be involved. When failed fibers and matrix cracks do not induce a significant

stress concentration within intact fibers, global load sharing (GLS) applies.2 5 Then, the

effective gauge length relevant to fiber failure is governed by the load transfer length.

Consequently, the UTS becomes independent of the actual gauge length. Conversely,

when an unbridged segment of matrix crack exists (because of processing flaws, etc.),

the stress concentration induced within the fibers reduces the UTS.8,15 In this case, fiber

pull-out appears to control the UTS.4 1 Constituent properties that lead to this transition

in behavior will be discussed below.

2.2 Matrix Cracks

A summary of the matrix cracking results is presented, which apply to materials

with relatively small debond energies (SDE). More complete results are presented

elsewhere.2 1,24 Long matrix cracks interacting with fibers are subject to a steady-state

condition, which leads to a lower bound cracking stress, given by2,18,19

E_-- - = [ '6fT E R, I - q/E . (la)

E [(1 -f)E 2REL
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where q is the residual axial stress in the matrix, which is related to the misfit strain, ',

by;19

q/Er = J3[Ef/E 1(1-v)]fQ (0b)

with = 1. The first important non-dimensional relationship is thus (Table I1),

amc/EL = My- 3Q (lc)

As multiple matrix cracking develops, the slip zones from neighboring cracks

overlap and produce a shielding effect.20,22 When the shielding proceeds to completion,

a saturation crack density results. This occurs at stress ds, with an associated spacing, Is,

given by20

7,/R = x[rm(1-f)2 EfEm/f t 2 ELRf' (2a)

The coefficient X depends on crack evolution: periodic, random, etc. Recent estimates22

indicate that, X = 1.6. The second important non-dimensional formula is thus (Table I1),

7,1R = X LA (2b)

The actual evolution of matrix cracks at stresses above amc is governed by the size

and spatial distribution of matrix flaws. If this distribution is known, the evolution can

"*Q may be related to the thermal expansion coefficients of fiber or{ and matrix (am by,

S= (am - af)AT, where AT is the cooling range, taken as a positive quantity. However, in some
cases, there are additional contributions from phase transformation, 'intrinsic' stress, etc.
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be simulated2 0 (Fig. 2).t A simple formula that can be used to approximate crack

evolution is9

= fomc-(1]3)

Direct application of Eqns. (1) to (3) requires that the elastic properties be known

and, moreover, that the constituent properties (T, Fm and Q) be independently

measured. 9,30 However, it would be more convenient if a methodology existed that

related the constituent properties to readily measured macroscopic features. With this

objective, a series of formulae have been derived from basic solutions for debonding

and sliding at interfaces, as matrix cracks evolve.2 1,24,31 Matrix cracks increase the elastic

compliance. Numerical calculations indicate that the unloading elastic modulus, E*, is

given by31

EL/E -1 (Rfl)a[fE,/Em] (4)

where (X is another non-dimensional function (Fig. 3). Initial unloading occurs with

modulus, E*. However, the displacements caused by reverse sliding soon dominate.3 2,33

These lead to an effective unloading/reloading modulus, EL and generate a hysteresis

loop, width 8c. When the stress dp is below ds, such that limited slip zone overlap

occurs, the unloading modulus and the loop width (Fig. 1) are independent of the misfit

strain, Q, but relate to the sliding stress, 'C. They are also independent of ri, for

SDE.24,32 The unloading modulus is given by23,24,31,32

• In some cases, small matrix cracks can form at stresses below q-C. 28.29 These occur either within matrix-
rich regions or around processing flaws. However, the non-linear composite properties are usually
dominated by fully-developed matrix cracks that form at stresses above Gmc (Fig. 1).
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E'/ E = H+1 E'*/P (5)

where H is the third important non-dimensional parameter (Table II), given by

H = b2 (1- ajf)2RU2/4"TEm f2 (6)

The width of the hysterisis loop 8S is24,32

5SE = 2H(U/;dP)[1-U/UP] (7a)

such that the loop width at half maximum, 5 C1/ 2 (at E = ap/ 2 ), is

bEy = H/2 (7b)

The permanent strain, gp, is sensitive to the sliding stress and the misfit, as well as the

debond energy. It is given by,212 4,32

EP= 291j1-zll[1-1i+22XTI+e_ (8)

where Yj and I are two non-dimensional parameters (Table II) that introduce the

influence of the debond energy ri and the misfit strain Q, given by21 2 4,32

XT
OP (9)

= (1/c,)VEm-/Rd 'T
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and E* is the extension associated with relief of the residual stress caused bv matrix

cracks, in the absence of interface sliding,31

e- = (Eý2/E) [fa 2/(1-af)][E/E.-1] (10)

The above results can be combined to give an expression for the secant modulus, Es.24

The resulting constitutive law may be used to simulate stress/strain curves. 24 The

results may also be used to evaluate T, Fi and K2, provided that 2s has been measured,

as elaborated below.

At stresses above ds, the behavior is less well-documented. it has generally been

assumed that the tangent modulus Et is that associated exclusively with the fibers,1 8

Et = fEf (01)

However, deviations from Eqn. (11) often arise.22

Finally, it is noted that certain matrices (especially oxides) are susceptible to stress

corrosion cracking. 25 This phenomenon leads to time-dependent matrix cracking, which

can occur at stresses below drnc.

2.3 Fiber Failure

Several factors are important concerning fiber failures within a composite matrix.

(i) Fibers begin to faii prior to the UTS.25-2 7 At the UTS, the fraction of failed fibers

within the characteristic length, 8c, is sufficient that the remaining intact fibers are

unable to support the load. (ii) The stochastic nature of fiber failure dictates that the

fiber failure sites have a spatial distribution around the fracture plane. Consequently, a

frictional pull-out resistance exists. This resistance allows the material to sustain load,

beyond the UTS. The associated pull-out strength Sp is an important property of the
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composite. (iii) When unbridged flaws exist in the material, the matrix cracks introduce

stress concentrations ,,ithin intact fibers. This effect may' lead to a reduced UTS.S-15

The basic stochastics of fiber failure have identificd two non-dimensional

parameters: a characteristic strength 25,36

S = S(, 12a)

and a characteristic length

= L.[SoR/tLo]W'; (12b)

related by

S,= 8/R (12c)

When multiple matrix cracking precedes composite failure, and when GLS applies, the

UTS is gauge length independent at large lengths (Lg 5 8c). The UTS is given by25

S,= fSF(m) (13)

where

F(m) = [2/(m + 2 )]JvW* [(m+ 1)/(m+ 2)]

At shorter gauge lengths (Lg < 8c.), the UTS increases as Lg decreases 26 (Fig. 4).

In principle, it is possible for composite failure to be preceded by relatively few

matrix cracks, with GLS still applicable. Then, because the average stress on the fibers is
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lower, the UTS is predicted to be higher than S,. In the limit wherein only one matrix

crack has formed, the UTS (subject to GLS) is

S = f SG(m) (14)

where

G(m) = [(5m + 1)/5m]exp[- 1/(m + 1)]

The spatial distribution of the fiber failures that occur upon loading results in fiber

pull-out on the matrix fracture plane. The mean pull-out length, h (for Lg > 8), has the

non-dimensional form25,36

h'r/RS, = X(m) (15)

There are two bounding solutions for the function k (Fig. 5). Composite failure subject

to multiple matrix cracking gives the upper bound. Failure in the presence of a single crack

gives the lower bound.

Because of pull-out, the system has a residual strength, Sp, (Fig. 6a) given by

SP = 2tfh/R (16)
=- 2fS, X•(m)

The preceding results are applicable provided that there are no unbridged

segments along the matrix crack. Unbridged regions concentrate the stress in the

adjacent fibers and weaken the composite. The effect can be addressed using Large-
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Scale Bridging Mechanics (LSBM). Simple linear scaling considerations require that the

strength S* depend on a non-dimensional flaw index8,15 (Table II),

A = aS 2/E1 F,,1 (17)

where Fo is the area under the stress/displacement curve for the bridging fibers, S is the

fully-bridged UTS and 2ao is the length of the unbridged segment. The flaw index A

must be specified for each bridging law, based on Fco. The functional dependence of

strength S* on A has been determined by numerical analysis for two limiting cases.3' A

lower bound arises in the presence of bridging without pull-out (S = Su, Sp = 0), with

flaw index8,15 (Table II),

A, = 3[f/(1-f)]2 (EIEL/E') (aoT/RS) (18a)

The dependence of the UTS on A b is plotted on Fig. 6a. An upper bound obtains when

the UTS is pull-out dominated (S = Sp), with flaw index8 ,37,4 1 (Table 1I),

A =2(a/)(SP/EL) (18b)

The degradation is plotted on Fig. 6b. The behavior between the bounds has not been

well-established. It involves coupled bridging and pull-out. One result 3 7 (plotted on

Fig. 6a) suggests that the lower bound is more relevant when A b Z 0.3, whereas the

upper bound is a reasonable approximation when A b > 1.5.

Experimental validation of the above results requires independent measurement of

So, and m. Tests conducted on pristine fibers are not relevant, because fiber degradation

usually occurs upon composite processing. 10,38,42 Two approaches have been used. One

approach entails removal of the matrix, by dissolution,1 which is only feasible if further
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fiber degradation does not occur. The second approach involves fracture mirror

measurements on failed fibers, after tensile testing of the composite.1 0,38, 3 9 ,4 2

3. CHARACTERISTICS OF 2-D MATERIALS

3.1 Matrix Cracking

General comparison between the stress/strain, 0(c), curves measured for 1-D and

2-D materials 4 1 (Figs. 7 and 8) provides important perspective. It is found that (Y(E) for

2-D materials is quite closely matched by simply scaling down the 1-D curve from S to

S/2. The behavior of 2-D materials must, therefore, be dominated by the 0' pliesJt which

provide a fiber volume fraction in the loading direction about half that present in 1-D

material.

The only significant 2-D effects occur at the initial deviation from linearity. At this

stage, matrix cracks that form either in matrix-rich regions or in 900 plies evolve at

somewhat lower stresses than cracks in 1-D materials. 29,30 However, the associated non-

linearities are usually slight and do not normally contribute in an important manner to

the overall non-linear response of the material. For example, matrix cracking in the 90'

plies often proceeds by a tunneling mechanism9 ,43,44 (Fig. 9). Tunnel cracking occurs

subject to a lower bound stress 11,4 3,44

(Y = [ 17 E/gt])X -- oR(EL + ET)/2ET (19)

where g is a function that ranges between 1/3 and 2/3.44 The unloading modulus

associated with tunnel cracks is44

t Furthermore, since some of the 2-D materials are woven, the S/2 scaling infers that the curvatures
introduced by weaving have minimal effect on the stress/strain behaviors.
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E/E 11(Ef/E ft/E) (20)

with E being the mean crack spacing in the 90' plies. The function h varies between I

and - 0.6 as t/L changes from - 0 to > 1. The corresponding permanent strain iS44

EP = (1-Ev2/EL)aR/E?_ (21)

The actual evolution of cracks at stresses above Gr depends on the availability of flaws

in the 90' plies.

Extension of these tunnel cracks into the matrix of the 0' plies results in behavior

similar to that found in 1-D material. Moreover, if the stress iý) acting on the 0' plies is

known, the 1-D solutions may be used directly. Otherwise, this stress must be

estimated. For a typical 0 /90 system, do ranges between a and 2 a, depending upon the

extent of matrix cracking in the 90' plies and upon ET/EL.44 Preliminary analysis has

been conducted below using,60 = 2a, as implied by the comparison between I-D and

2-D stress/ strain curves (Fig. 8). Additional modelling is required on this topic.

3.2 Fiber Failure

The matrix cracks that originate in the 90' plies and extend through the 00 plies

must induce a stress concentration in the fibers. The phenomenon is analogous to that

considered above for 1-D material containing unbridged segments. When the stress

concentration is small, the UTS should be given by Eqn. (13), but with f replaced by ft.

In a typical case (filf = 1/2), the UTS would be Su/2, consistent with experimental

findings on several CMCs (Fig. 8). In other cases, the stress concentration is important

and the UTS is significantly smaller than S./2.
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Major factors governing the stress concentration are the modulus ratio, ET/EL, the

crack spacing, L, and T . That is, small values of ET/EL, L and T alleviate the stress

concentration.41

3.3 Shear Damage

When loaded in shear, 2-D CMCs are subject to non-linear deformation. 45 The

deformations are governed primarily by matrix cracks. Typical shear stress/strain, T(y)

curves (Fig. 10) indicate that CMCs can normally sustain larger shear strains than tensile

strains prior to failure. The matrix damage often consists of cracks oriented at 45' to the

fiber axis. Since fiber sliding is inhibited in shear loading, the elastic compliance of the

composite with matrix crac', :s may be a useful upper bound for the shear strength.

Consequently, when normalized by the shear modulus of the composite (Fig. 10), the

T(O curves found for a range of CMCs tend to converge into a band.

4. TEST METHODOLOGY

The preceding characteristics suggest a methodology that can be used to efficiently

evaluate constituent properties, which may then be used to make predictions about

composite performance. The basic philosophy is that straightforward procedures be

used, with consistency demonstrated between independent measurement approaches.

The measurements that are experimentally convenient include: the fiber pull-out length,

h, the matrix crack spacing at saturation, is, the stress/strain (a, E) behavior, the

fracture mirror dimensions and the bending deformation of a bilayer (Table I).

The steps are as follows. Generally, the fiber modulus is known, whereupon Erm

can be evaluated from the measured initial composite modulus. Both Sc and m are

known, provided that fracture mirror measurements have been made. Curvature

measurements made on bilayer provide Q. At this stage, measurements of pull-out,
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saturation crack spacing and unloading/reloading hysteresis are used to determine t,

ri and Fm, as well as to provide checks on the magnitudes of Sc and U 24.34

Specifically, the magnitude of t is obtained from the hysteresis loop width at half

maximum, 8 C 1/2, measured as a function of d. (Eqn. 7b) and checked using the

unloading modulus, E (Eqn. 5). Typical results are shown in Figs. 11 and 12. Then, the

misfit strain, Q2, and the debond energy, ri, are evaluated front the permanent strain Ep

(Fig. 13) by using Eqn. (8). Additional procedures have been devised to determine J2.24

The misfit is compared with the bilayer measurements. Thereafter, the fiber pull-out

lengths are used to provide consistency checks on T and So, by using Eqn. (15), with the

appropriate bound for X.

When the preceding measurements provide consistent information, two other

results can be used. The saturation crack spacing, 2s, allows estimation of F-m (Eqn. 2),

which may be compared with values found for the monolithic matrix material. The

same value of Fm can be used to calculate the matrix cracking stress, amc (Eqn. 1),

which can be compared with the onset of linearity found in the stress/strain curves.

Finally, with Sc and m known, the UTS may be compared with the strengths

predicted from global load sharing analysis (Eqn. 13) and fiber pull-out analysis

(Eqn. 16). This comparison gives insight about the influence of matrix flaws on stress

concentrations expected in the fibers.

The procedure is briefly illustrated by referring to a comprehensive set of results

obtained on both SiC/CAS6,9,24 ,30 and SiC/SiC29,34 ,46 (see Figs. 11-13). The constituent

properties for these two CMC systems obtained using the above methodology are

summarized in Table III. More complete assessments are provided elsewhere.24,34 The

comparison between these two systems is interesting, because the constituent properties

are very different. (i) In the SiC/SiC system, the fibers have clearly been degraded

during processing. (ii) The large difference in T indicates that the C coating placed on

the fibers in the SiC/SiC material (by vapor deposition) has very different properties
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than the C interphase in the CAS system, which is governed by reaction during

processing. The high stiffness of the SiC matrix may also have an important influence

on t. (iii) The SiC/SiC system has a substantially larger debond energy, F~i, which is the

origin of the relatively small permanent strain.

5. SIMULATIONS

When the constituent properties have been evaluated in a consistent manner, the

stress/strain curves, for SDE materials, at stresses prior to saturation may be simulated

by using Eqns. (1) to (10).24,34 The procedure is straightforward for 1-D material,

provided that Eqn. (3) is a reasonable representation of matrix crack evolution. Some

examples are presented in Fig. 14a.24 Further work is needed to predict the behavior

above ds. The simulation capability for 2-D material depends on the assumption made

about the stress do acting on the 0' plies. If this stress is considered to be, d. = 2d, the

simulations for SDE materials, based on SiC/CAS (Fig. 14b), agree quite well with

experiments except at small plastic strain.34 Further research is needed to understand

the behaviors at small plastic strains.

6. EFFECTS OF STRAIN CONCENTRATIONS

6.1 General Considerations

When either holes or notches (or other strain concentrating sites) are introduced,

experimental results have indicated that CMCs can exhibit (at least) three classes of

behavior,12,40 as sketched in Fig. 15. Class I materials exhibit a dominant (mode I) crack

emanating from the notch, with fiber failures occurring as the crack extends across the

material. Class II materials experience multiple (mode I) matrix cracking from the notch.

These cracks usually extend across the net section prior to fiber failure. In class III
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materials, shear damage occurs from the notch and extends normal to the notch plane

piior to composite failure. In all three cases, stresses are redistributed by matrix cracking

as well as by fiber pull-out.

The characterization of notch effects for CMCs exhibiting these three -',asses of

behavior appears to require different mechanics, because the stress redistribution

mechanism within each class operates over different physical scales. Class I behavior

involves stress redistribution by fiber bridging/pull-out, which occurs along the crack

plane. Large-Scale Bridging Mechanics (LSBM) is preferred for such materials. 8,13-15

Class II behavior allows stress redistribution by large-scale matrix cracking.

Consequently, a mechanism-based, Continuum Damage Mechanics (CDM) is regarded

as most appropriate. 16 Class III behavior involves material responses similar to those

found in meta]s, 12,40,4 1 and a comparable mechanics might be used: either LEFM for

small-scale yielding or non-linear fracture mechanics for large-scale yielding. Since a

unified mechanics has not yet been identified, it is necessary to devise mechanism maps

that distinguish the various classes, through constituent properties. Initial attempts are

elaborated below.

6.2 Mechanism Transitions

The transition between class I and class II behaviors involves considerations of

both matrix crack growth and fiber failure. One hypothesis for the transition may be

analyzed using LSBM. Such analysis allows the condition for fiber failure at the end of

an unbridged crack segment to be solved simultaneously with the energy release rate of

the matrix front. The latter is equated to the matrix fracture energy. 15 By using this

solution to specify that fiber failure occurs before the matrix crack extends into steady-state,

class I behavior is presumed to ensue. Conversely, class II behavior is assigned when

the steady-state matrix cracking condition is achieved prior to fiber failure. The

resulting mechanism map involves two indices:15
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s : (RS/a,,z)(E 2/El Ef)I[(1- f)(24a)
= 3/A1b

and

CM = /S (24b)

With S and Cm as coordinate-, a mechanism map may be constructed that distinguishes

class I and class II behavior (Fig. 16). Whilc this map has qualitative features consistent

with experience, the experiments required for validation have not been completed. In

practice, the mechanism transition in CMCs must involve additional considerations.

The incidence of class III behavior is found at relatively small magnitudes of the

ratio of shear strength, T, to tensile strength S. When T/S is small, a shear band

develops at the notch front and extends normal to the notch plane.10,40 Furthermore,

since T is related to G (Fig. 10), the parameter G/S is selected as the ordinate of a

mechanism map.12,41 Experimental results suggest that class III behavior arises when

GI/S Z 50 (Fig. 17).

6.3 Mechanics Methodology

i) Class I Materials

The class I mechanism, when dominant, has features compatible with LSBM. These

mechanics may be used to characterize effects of notches, holes and manufacturing

flaws on tensile properties, whenever a single matrix crack is prevalent. For cases

wherein the flaw or notch is small compared with specimen dimensions, the tensile

strength may be plotted as functions of both flaw indices: A b and A p (Fig. 6). For the

former, the results are sensitive to the ratio of the pull-out strength Sp to the UTS. These
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results should be used whenever the unnotched tensile properties are compatible with

global load sharing. Conversely, A p should be used as the notch index when the

unnotched properties appear to be pull-out dominated.

When the notch and hole have dimensions that are significant fraction of the plate

width (ao/w > 0), net section effects must be included.8,37 Some results (Fig. 18) illustrate

the behavior.

Complete experimental validation of LSBM for class I materials has not been

undertaken. Partial results for the material, SiC/CB, are compatible with LSBM, as

shown for data obtained with center notches and center holes 12 (Fig. 17), with A = 0.8.

For this material, the unnotched properties appear to be pull-out controlled,10" 2 and the

constituent properties give a pull-out notch index, A p = 0.76.

ii) Class II Materials

The non-linear stress/strain behavior governed by matrix cracking, expressed

through E (Eqn. 5) and Ep (Eqn. 8) provide a basis for a Damage Mechanics approach

that may be used to predict the effects of notches and holes. Such developments are in

progress. An important factor that dictates whether continuum or discrete methods are

used concerns the ratio of the matrix crack spacing to the radius of curvature of the

notch.

In practice, several class II CMCs have been shown to exhibit notch insensitive

behavior for holes and notches in the size range: 1-5 mm (Fig. 19). These materials

include: SiC/CAS6 and SiC/glass (1070).7 The non-linearity provided by the matrix

cracks thus appears to allow stress redistribution to an extent that essentially eliminates

the stress concentration.7, 4 7 The elimination of the stress concentration has been

established both by notch strength measurement 6,7 and by thermoelastic emission

tests.46
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iii) Class III Materials

Class III behavior has been found in several C matrix composites 10 ,12 (Fig. 16). In

these materials, the extent of the shear deformation zone k is found to be predictable

from measured shear strengths, T, in approximate accordance with 12

tp/ao = a/T (25)

Calculations have indicated that this shear zone diminishes the stress ahead of the

notch, 12 analogous to the effect of a plastic zone in metals, and provides good notch

properties. For several C/C materials, it has been found that the shear band lengths are

small enough that LEFM characterizes the experimental data over a range of notch

lengths. For edge notched specimens, it is found that, 12 KIC = 16 MPa M (Fig. 20).

However, conditions must exist where LEFM is violated. For example, when ip/ao 5 4,

the stress concentration is essentially eliminated and the material must then become

notch insensitive. 12 Further work is needed to identify parameters that bound the

applicability of LEFM, as well as establish the requirements for notch insensitivity.

7. SUMMARY

Test methods have been described that relate constituent properties to macroscopic

behaviors in a consistent manner. The approach has been illustrated for two CMC

systems. It is expected that the methodology will be used to predict stress/strain curves

and examine their sensitivity to constituent properties. These properties may be used to

delineate mechanism maps that represent transitions in macroscopic performance,

especially in the presence of strain concentrations. Mechanics procedures for each

mechanism have been described in a preliminary manner. A concerted effort is needed
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to further develop and validate the mechanics, which should have applicability to a

wide range of technologically important CMCs.
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TABLE I

Measurement Methods

CONSTITUENT PROPERTY MEASUREMENT

* Pull-Out Length, h25,36

SlIiding Stress, T * Saturation Crack Spacing, j,20,22

* Hysteresis Loop, 5 , 1/223,24

* Unloading Modulus, kL23,24

* Fracture Mirrors38' 39

Characteristic Strength, So, m

* Ultimate Strength, S25

e Bilayer Distortion9

Misfit Strain, 0 e Permanent Strain, e-p23,24

* Residual Crack Opening32

* Monolithic Material

Matrix Fracture Energy, 17, * Saturation Crack Spacing, 1, 22

* Matrix Cracking Stress, amc19

Debond Energy, 1-i * Permanent Strain, Ep21,2 4

* Residual Crack Opening 2 1,24
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TABLE 11

Summary of Non-Dimensional Coefficients

T =-- (c2/c)EmQ/a ', M isfit Index 21' 24' 32

-' =- (1/c1 ) /E m'/R ~ *-El, Debondlndex 21' 24

H = b 2(1 - a1 f)2 RRi/47 EýEf2 , Hysteresis Index24 ,32

L = F1,(1 - f) 2 E1 En /f't 2 E,R, Crack Spacing Index22

M)/ = 6TtFmf 2 Ef/(1 - f)E2 RE, Matrix Cracking Index2,18,19

Q = Eif fŽ/EL(1 - v), Residual Stress lndex1 9, 24

.Aq = a,, S2/EL F, Flaw Index8

= - f)I]'(EEL/E24) (aot/RSi,), Flaw Index for Bridging 8,15

.Ap = (ao/h) (Sp/E,.). Flaw Index for Pull-Out 37'4 1
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TABLE III

Important Constituent Properties For CMCs:

Comparison Between SiC/SiC and SiC/CAS

MATERIAL

PROPERTY
SiC/CAS SiC/SiC

Matrix Modulus, Em (GPa) 1I • 400

Fiber Modulus, Ef (GPa) 200 200

Sliding Stress, T (MPa) 15-20 100-150

CONSTITUENTS Residual Stress, q (MPa) 80-100 50-100

Fiber Strength, Sc (GPa) 2.0-2.2 1.3-1.6

Shape Parameter, m 3.3-3.8 4.2-4.7

Matrix Fracture Energy, Fm (Jm-2) 20-25 5-10

Debond Energy, Fi (jm"2) -0.1 - 2

Matrix Cracking Stress, (Ymc (MPa) 140-160 200-220

DEPENDENT Saturation Crack Spacing, ds (grn) 110-130 15-20

PROPERTIES,,,, Pull-out Length h (grn) 250-350 25-40
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FIGURE CAPTIONS

Fig. 1. A schematic indicating the consequence of matrix cracking in CMCs on the

stress/ strain behavior.

Fig. 2. A schematic indicating the parameters that influence the evolution of matrix

cracks in 1-D CMCs. 30

Fig. 3. Effects of matrix crack density on the elastic compliance of 1-D CMCs.31

Fig. 4. Effects of gauge length on the ultimate tensile strength predicted by global

load sharing analysis. 27

Fig. 5. Bounding solutions for the non-dimensional fiber pull-out length. 25

Fig. 6. Strength degradation in elastically isotropic CMCs subject to unbridged

segments (length 2ao) a) combined bridging and pull-out; b) pull-out.8, 37

Fig. 7. A comparison of stress/strain curves for 2-D CMCs all reinforced with Nicalon

fibers (with f = 0.4). The SiC/CAS is a laminate, the SiC/SiCcvi has a plain

weave: the other materials have a 8-harness satin weave.4 1

Fig. 8. A comparison of 1-D and 2-D CMC tensile propertiez; obtained for SiC/CAS
and SiC/SiCcvi. The lines marked (1/2)1-D are the results for 1-D material

reduced in scale by (1 /2).41

Fig. 9. A typical matrix cracking mode in 2-D CMCs. 9

Fig. 10. The shear strength of various CMCs normalized by the composite shear

modulus. 45

Fig. 11. The unloading modulus measured for 1-D and 2-D SiC/CAS and SiC/SiCcvi

showing comparisons with the model (Eqn. 5) for various sliding stresses. 24 -34

Fig. 12. Variations in the relative hysteresis loop width with crack density obtained for

2-D SiC/SiCcvi showing comparisons with the model (Eqn. 7) for various
sliding stresses. 24
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Fig. 13. Variation in permanent strain for a 1-D SiC/CAS material showing

comparisons with the model (Eqn. 8) for various values of the sliding stress,
using an independently determined value for the misfit strain, with (F1i = 0).30

Fig. 14. Simulated stress, strain curves for SDE material a) 1-D material with notational

constituent properties. b) 2-D material simulation obtained by assuming

do = 2d, compared with experimental measurements (constituent properties

relevant to SiC/CAS).

Fig. 15. The three classes of behavior found in CMCs and the associated mechanisms

of stress redistribution. 40' 4 1

Fig. 16. A proposed mechanism map for the transition between class I and class II

behaviors.15A1

Fig. 17. A proposed mechanism map for the transition to class III behavior.45

Fig. 18. Effects of holes and notches on the tensile strength predicted using LSBM. Also
included are results obtained for SiC/CB.12

Fig. 19. The notch strength of a 2-D SiC/CAS composite revealing that this is a notch
insensitive material.6

Fig. 20. Use of LEFM to characterize the notch strength of C/C composites. 12

KJS 3/15•3 32



Cl,
C,
L- i •Loop Width, 6.b-0 (T'me

/ "Elastic Unloading, E

E, Unloading Modulus, E

CIDStrain, £-

Figure 1

Oonwu. UI II~B~n**OB~



- - Saturatfion}

Crack
Density, p

tR x eId 

Interface

I 4= Residual / Sliding
Tension, q / Stress, -t

M a rxCracking

(Lower Bound), (Ymmc

- Applied Stress, Y

Figure 2

Downrgue Geysit..Evatm.URI. I 1 rk-02N30-2



LO

E

LO)
1~w

0

LO¶

HIJ/Z[i.-* / 13] 'juaim!JgoQ eoueildwoQ



C;

U-

0 0)

ct)

6cc

CMj

CMj

E
LOl CM LOl LO¶
CM 0

nS/S qlh~ua~jlt 91!p'e'



I CMJ

-0
I~

-0 1 0O

E

(1.

ClL
cun

.. Po .. ,4 '00 o 00d

Ir Cul

lq.I2- g- no1n 9Ile



LO~

Cr/)

~c

CL

(0

IL

/c cz

/ It)

6j D 6~ C6

S/S ... ujl e. sej



1.2 1 1 1

1.0

-• O .8.. . . .

C/)

a 0.6

~, 0.4 ha~rp Notchj

Cr" 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

Flaw Index, Ap=(ao/h)(Sp/E)

Figure 6b

Evans .-UR1-3M93WnkD42 #86&-b



4.c00 r , '*.. ' , " '" i

350

SC/C ,Sc/ ,,1 SiC/C

300 I It
C s I

c3. 25I SiC/SiCpt ,//-

250 
/

If
I /-

(r) /
200 ,

. I

" "-• 150 - CV ,,,,,"-

100

I I
I

50 • -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Tensile Strain, F-(%)

Figure 7

a W



500,0

400 -4,

a._ 300

a• 200 - " - - 4
[,Y-o ,.v .. (o°/90°)

100 / -

1/ ---- SiC/CAS

S--- SiC/SiC (CVI)
IIII ,,,I I I I, ,

0 0.5 1.0

Strain (%)

Figure 8

Ev'ans A.92.amk.-D39g 41-3



o o 0 0 0
0 0 0 0 0

0 "Bo 0 0 0 a -

o 0 o 0 0 Tunneling
Crack Growthooo o0 0 q0 0 0 0•

o o 0,

00o
0 o

0 0 
0 0 0 0 0

0 00 RTT. 0 0

FL 000 0 0 0 00 0 
0

0000 0 a

I! 1 1

Figure 9

Ev~n..URI-.At91 •m*oO 4390-1



-- 7- SIC/C
_B 7-

(5

CD)

S4 C /C

Y SiC/CAS
N 2 - t

z I__ _ _ _I _ _ __a_ I _ _ a_ I_ _ aI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Shear Strain, 6(%)

Figure 10



Experimental

Material 1 -D 2-D

1 SiC/CAS K 0

0.9- Predictions -

LU

ui 0.8-

-0 SiC/CAS
"0
S 0.7=

Cz 0.6- 5W0

0.5 SiC/SiC 100

SiC/CAS SiC/SiC

0.4-
TO0 -- 1.5 T:O -* 10__0

0.3 1 - I I I
0 100 200 300 400

Applied Stress, I (MPa)

Figure 11

Evarit URI- 1I..'1-arnk-C a001g 1 I



1000

040

CUU

8 400 OP

U 600

0L •-T-1Q 10O0 MPa

0 400

.-1a)

200

0 2 4 6 8 10

Relative Crack Spacing, U.R

Figure 12

Domwous URI-, 1 192,a•,D2090-



E~ 0

C14 x ) co

w 0L

0

CV)

to

C,)

L.O

C>

da UIP I 0BJ~



600

500 t=200 MPa

400 .

300 "

200

a) LDE F-=2Jm2

as/a'mc =2

0

cni
un 400 -T=200 MPa

0) 20

300 - .2

200

100b) SDE Fi= 0
bo S/{mc = 1.5

0 II
0 0.002 0.004 0.006 0.008 0.01 0.12

Strain, Z

Figure 14a

Vagaggoto F~am -U R l 3•ai,•,D42#1048 1



LO)
C)J

0 u'

E

CC

U.

C) c
Q)i

E
CL

0x

'~ V Lf

o CD C~j OD

(EdVVJ) 0 'SSEJWS



Class I Class II

Matrix Cracking + Fiber Failure Matrix Cracking: No Fiber Failure

0,

0,%

it..

L2 t2

Matrix Cracks
Pull-Out Tractions Redistribute Stress

Redistribute Stress

Class III

Shear Damage By Matrix Cracking

Reitribue Stel

Figure 15

DflC~n,,.CrCW.1URI :sr1*ISIlII

I~ll I0

Sý I IIII

:illlII 0

Shear DaagZn

Fia Dmgue 15n

ooý,Redstriute umtre,•sk-nsm



t S

Class II

No Fiber Failure

- 20-

LU
a0E 15-

LU
V

o Class I

C/) Fiber Failure

-10-

5-

0 0.2 0.4 0.6 0.8 1.0

Non-Linearity Coeff 10ient, (Ymc /S

Figure 16

Earv URI l.-M-a P2'7138481123



10 SiC/SicC~v

SiC/CAS Cas11

Ul) sic/sicpp
(D 102 SiC/OB

100

/ Class Ill

Figure 17

E van%. U A I 2f92 T*.O)948GS- 1



* 4F

~ IN

Ii 0... Z I!c
i/Il zj ~

co NtC'j 0

oCo 6 6

S/*S 'qbue)JjS 9jISUOJ 9A!IeBIU



C14)
0 CC)

z

as3

01 (1)N

o~l 61 I l

7- 0 C \1 tj (f 0

S/.S 'ip.6uAn 40ION



4. I I I I I I I~ I Ii i i

4 0 0 - • '' • I i'
i "• Materials

X Unnotched
300 UTS 0 C/C, X

,, 0 C/C, Y

250

C 200

_c 150

)

C 100 KIc= 16 MPa -/-m

50

0 I , I s • I I

0 1 2 3 4 5 6 7

Notch Size, ao (mm)

Figure 20



A I A LS

MATERIALS

6-n

DAMAGE AND FAILURE IN
UNIDIRECTIONAL CERAMIC-MATRIX

COMPOSITES

by

D. S. Beverle, S_ M. Spearing, F. W. Zok and A. G. Evans

Materials Department
College of Engineering
University of California

Santa Barbara, California 93106

"x;, 64W



ABSTRACT

A study of the mechanical characteristics of a unidirectional fiber-reinforced CAS

matrix composite has been conducted. The pr,,perties have b,-,- -elated to the

individual properties of the matrix, fibers and the interfaces, as well as the residual

stress, using available models of matrix cracking and fiber fracture. Comparisons have

been made with LAS matrix composites. Predictions of initial matrix cracking and of

ultimate strength using the models are found to correlate well with the measured

values. However, deficiencies have been noted in the ability of the models to predict the

evolution of matrix cracks, plus associated changes in the modulus.
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1. INTRODUCTION

The response of unidirectional ceramic matrix composites to loading in the

longitudinal direction involves consideration of the properties of the fibers, the matrix

and the interface in situ in the composite, as well as residual stresses caused by thermal

expansion misfit. Present understanding is as follows. Most composites are reinforced

with SiC (Nicalon) fibers with thin coatings of C on the fibers. 1-6 Stich composites

usually exhibit non-linearity prior to failure, 1,4-7 dominated by damage in the form of

multiple matrix cracking. The non-linearity is manifest as a reduction of tensile

modulus E with applied stress, T, coupled with a permanent deformation, as well as

changes in thermal diffusivity and thermal expansion coefficient. These effects can be

important for structural applications, especially the damage that occurs in the vicinity of

holes, notches and around attachments. Mechanism-based relationships between E and

G represent important properties of the composite. The ultimate tensile strength of the

composite and its dependence on the properties of the fibers and fiber coatings

in situ 8-10 constitutes an additional composite property.

Micromechanics models representing each of the above phenomena have been

developed: matrix cracking,11-14 failure15 and debonding.16 Such models provide

valuable insight into the effects of the constituent and interface properties on the

mechanical behavior of the composite. However, comparison with experiment,

especially with regard to matrix cracking, has lead to contradictory conclusions 5,7.17,18

The apparent discrepancies arise either from widely differing choices of the properties

of the compositz constituents (fiber, matrix, interface), i, 5itu in the composite, or from

differing assumptions about the flaw distributions in the matrix. A clarification of the

issues is attempted in the present study by conducting an investigation of the properties

of a unidirectional composite with a calcium alumina silicate (CAS) matrix, reinforced

with Nicalon (SiC) fibers,3 and comparing with results from the literature on a lithium
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alumino silicate (LAS) matrix comp3site with the same fibers.1, 2 For this purpose, the

status of the salient modelling efforts is briefly reviewed, in a manner that explicitly

identifies the constituent and composite properties that require measurement. Then,

measurements are made that enable comparison with the models.

2. MODELLING BACKGROUND

2.1 Interfaces

In general, composite interfaces are characterized by two parameters: a debond

energy F- and a sliding stress along the debonded interface, T .19 For most C coatings, FIi

appears to be small 6 and will be neglected in the following summary. Also, in general, T

has a Coulomb friction component and varies as the matrix crack opens. 19 However,

again the effect appears to be small for most ceramic matrix composites6,20 and, in the

following, T is regarded as a constant.

2.2 Matrix Cracking

A fundamental notion in matrix cracking, first introduced by Aveston, Cooper and

Kelly1 1 (ACK), concerns the concept of steady-state, wherein the energy release rate for

a single matrix crack Go is independent of matrix crack length and given by 12,13

(a + qE/E,) 3 E' (1 - f) 2 R
-6"tf

2Ef-E2  (1)

where 5 is the imposed stress, E is Young's modulus, f is the fiber volume fraction, R is

the fiber radius, q is the residual axial stress in the matrix (positive being tensile) and

the subscripts m and f refer to matrix and fiber, with E = f E+ (1 - )Em. Steadv-state

K,% 6,4,92 4



conditions apply provided that the initial flaws in the matrix, length a., exceed a critical

value, ac given byl,13 ,14

I (1_ _f)_ _ _ _

a 2 Ef2E 
(2)

where • = Eif/E.,(1 - f) and Im is the matrix fracture energy. When ao > ac, a lower

bound to the matrix cracking stress, 0o, is obtained by setting Go to the matrix fracture

resistance2," 12

Go (17 f) (3)

such that,

u = .- qE/E. (4)

where

M ~fE R (5)

When ao < ac, G < Go and the cracking stress cc exceeds Cro. 13 ,14

The development of cracks at stresses above 00 has aspects of both mechanics and

stochastics. The mechanics considers the mutual interactions between well-developed

cracks that affect the steady-state energy release rate.2 1 Stochastics involves the

distribution of matrix flaws having size ao ; ac and the resulting influence on crack

evolution, through coupled effects of weakest link statistics and mechanics. 22 ,2 3
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A comprehensive model that includes all aspects of the mechanics and stochastics does

not vet exist. However, the mechanics plus some simplified statistics addresses several

of the important factors. An important governing quantity is the slip length, d, between

matrix and fiber which in the presence of a steady-state matrix crack is given bv,4 _21

d/R = (a+qE/E,)Em,(1 - f)/2Efrt (6a)

which has the reference value

d./R = a.Em(1 - f)/2Eft (6b)

When the slip zones between neighboring cracks overlap, G for steady-state cracks

differs from Go. The relationship between G and Go is dictated by the location of the

neighboring cracks. When a crack forms midway between two existing cracks with a

separation 2 1, G is related to Go by21

GIG. = 4(1/2d)3  for0 S I/d<_1 (7a)

and

GIG, = 1-4(1-l/2d)' for I < I/d _ 2 (7b)

Consequently, if matrix cracks develop in a strictly periodic manner, the evolution of

the crack density with stress can be predicted by combining Eqns. (3), (6) ana (7),

leading to the result plotted in Fig. 1. In general, non-periodic crack locations exist.

However, a similar trend in crack spacing is obtained by placing the steady-state cracks

at spatially random locations relative to existing cracks, achieved by using a Monte
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Carlo simulation 21(Fig. 1). These results indicate that the average crack spacing reaches

a saturation value, I = 1.75d., when O/O. > 1.3. This solution provides a relationship

between the sliding stress and the saturation crack spacing (through Eqns. (5) and (6b)),

given by;

"= 2.0R(1-f)(r•E,E fEfP)"(

The actual evolution of matrix cracks would deviate from these predictions when

the initial matrix flaws are smaller than a The analysis of matrix cracking then relies on

information about the size and spatial distribution of matrix flaws and on the mechanics

of flaws smaller than ac.13, 14 In general, the solution requires combined analysis of the

initial flaw distribution and interaction with matrix cracks already formed. However,

some useful results can be obtained by using the mechanics of non-interacting short

cracks 13 with an extreme value matrix flaw size distribution.22,23 The principal result

arising from such analysis is that extensive matrix cracking is not predicted until

stresses are appreciably above Oo, as governed by the magnitude of the shape parameter

for matrix flaws: a quantity related to the Weibull modulus, m. A schematic that

combines the principal aspects of the above behaviors is presented in Fig. 2.

2.3 Residual Stresses

The residual stress q is governed by the misfit strain Q between the fiber and the

matrix. For matrix and fibers having the same Poisson's ratio, q is given by;12

.X2 Eý, Ef f 0
q = X1E(I - v) (9a)

where V is the Poisson's ratio,
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( 1- 2v)

(9b)

and

k = (1+ E/Ef)/2 (9c)

For v = 0.3 and for E/Ef representative of the present composite (Table I), -1  0.9 and

= 0.85. Similarly, the radial stress, p, at the fiber/matrix interface is12

E,(1-f)Q2
2Xk (10)

The interfacial sliding stress is expected to be influenced by both the sign and

magnitude of p. When the misfit arises solely from thermal expansion differences,

Q = (• - am)AT, where a is the thermal expansion coefficient and AT is the

temperature difference between softening and ambient.

The periodic matrix cracking is predicted to change the unloading (or reloading)

modulus in accordance with, 17,23

E/E = S(7/R) + RE2 (1- f )'a/41 EtEff 2  (11)

where S is an elastic compliance associated with the matrix cracks (of order I to 1.2) and

Aa is the incremental reduction in stress used to measure the modulus.. The modulus

thus decreases as the mean crack spacing increases and can be predicted by inserting

measured crack spacings into Eqn. (G1).
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2.4 Fiber Fracture and Composite Ultimate Strength

The factors governing the ultimate strength of a fiber reinforced composite have

been modelled using weakest link statistics.9,10, 15 The calculations assume that both the

debond energy and sliding stress are small, such that the fibers are non-interacting, and

that the matrix exhibits multiple cracking prior to composite failure. In this case, the

matrix allows load transfer along a fiber from a fiber failure site, through the interfacial

shear tractions, with global load sharing. As a result, fibers can experience multiple

cracking along their length.4 : Since the load transfer is governed by T, parameters such as

the pullout length and the fiber strength can be explicitly linked with r. Following this

approach, the ultimate strength of the composite au is predicted to be:15

[ 2 1X "" m + 11
=T f S, i

= (m+2)J Lm+ 2J (12)

where m is the Weibull shape parameter and Sc is a characteristic fiber strength, 9,15

which may be obtained directly from fracture mirror measurements. 10,15

Another important result relates the mean fiber pullout length to the interfacial

shear stress: 9,15

S= (m)RS,/4r (13)

where X(m) takes a value close to unity for m>3. This expression gives an alternative

means of estimating T.

±This multiple fiber cracking phenomenon associated with the stresses carried by failed fiber causes the
ultimate strength prediction to differ from that given by Cao et al.,s which ignores this factor,
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2.5 Implications For Measurements

For CAS composites reinforced with Nicalon fibers, several constituent properties

are relatively well known: including the elastic properties and expansion coefficients, as

well as fiber radius and fiber volume fractions (Table I). The important constituent

properties that require independent measurement are T, -m and q. In principle, q can be

obtained from Eqn. (9), if the misfit strain Q is known. However, AT is ill-defined and,

in some cases, additional stresses may develop as a result of matrix crystallization.

Additional measurements needed to correlate experiment with theory include the

matrix cracking stress and the crack spacing, both measured in situ. Moreover,

measurements to be performed on fracture surfaces include fracture mirror radii5,15 and

fiber pull-out distributions. 10,15

3. EXPERIMENTAL PROCEDURES

3.1 Testing

All experiments were conducted on a unidirectional laminate of CAS/Nicalon

material provided by Corning.3 Flexi tral specimens having dimensions 50 x 3 x 2.8 mm,

(with the fibers oriented along the axis) were prepared by diamond machining. The

tensile face and one side face were polished to facilitate the direct observation of matrix

cracks. The tests were conducted in four-point bending with inner and outer spans of 20

and 40 mm, respectively. The bending fixture was located within an optical microscope,

allowing high-resolution in situ observations of matrix cracking.

Tensile specimens were prepared by machining beams having dimensions

150 x 3 x 2.8 mm, followed by polishing. Aluminum tabs were bonded to the ends, to

ensure even load transfer and to avoid crushing of the specimen. Strains were measured

along a gauge length using an axial extensometer in contact with the specimen. Tests
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were performed in a servohydraulic machine with hydraulic grips Care was taken to

eliminate bending; strain gauge measurements confirmed that this was largely

achieved. Following mechanical testing, the specimens were examined in the optical

microscope and scanning electron microscope (SEM). In some cases, tests were

interrupted prior to failure and the specimens examined in the SEM. Several tests were

performed with partial unloading (AC = 25 MPa) conducted at discrete strain intervals,

as needed to determine the change in composite unloading modulus E as a function of

strain. There is a corresponding permanent strain, but this was not measured A few

tensile tests were conducted with two faces of the specimen having a matrix-only layer

on the outside, - 30 gtm thick. In all cases, loading durations were short (< 10s) to

minimize the influence of stress corrosion on the matrix cracking behavior. Time

dependent effects will be reported in a subsequent publication. 23

The matrix fracture energy was determined by testing chevron-notched flexure

specimens of unreinforced CAS. The load/displacement behavior was monitored

during testing to determine whether there was stable crack growth prior to catastrophic

failure. Tests were conducted rapidly (failure time < 1Os) to minimize the effect of stress

corrosion.

3.2 Observations

The onset and evolution of matrix cracks were studied by conducting experiments

on specimens with polished surfaces in situ within an optical microscope. Such

measurements were made under load, since some cracks were found to close upon

unloading, making them essentially invisible in the optical microscope (Fig. 3). Edge

replicates were taken during tensile tests, for the same purpose. Initial cracking was also

monitored using an acoustic emission transducer attached to the specimen. In situ

measurements were verified by ex situ measurements performed both in optical and
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scanning electron (SEM) microscopes. The SEM was also used to measure fracture

mirror radii and fiber pull-out lengths.

3.3 Residual Stresses

Residual stresses were measured using a dissolution technique described

elsewhere. 2 4 Long, thin strips were cut from the composite parallel to the fiber

direction. The strips were polished and mounted on a plate parallel to a steel reference

strip. Surface features were photographed at high magnification, and their positions

relative to marks on the steel strip were recorded. The ends of the composite strip were

masked with silicon rubber and the matrix dissolved using a dilute HF solution. The

length, w, of the dissolved section was varied between 40 and 120 mm. The masks were

subsequently removed and the relative positions of the same surface features were

again documented. The displacement, 5, of the masked section was obtained from

measurements on the micrographs. Provided that w is much larger than the zero-load

slip length, the residual stress, q, is related to 5 by:

q = 8Eff/w(1-f) (14)

4. MECHANICAL BEHAVIOR

Flexural tests gave load/displacement curves typical of those reported elsewhere. 4

The loads, when converted into a nominal maximum tensile stress, resulted in

stress/displacement curves with a non-linearity at about 200 MPa and an ultimate

strength (modulus of rupture) of about 650 MPa. Optical observations during testing

indicated that matrix cracks first developed on the tensile face at stresses between 130

and 150 MPa, consistent with the value ascertained for a similar material using acoustic

emission. 8 At higher stresses, additional matrix cracks formed, until a saturation
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spacing was attained. The distribution of crack spacing at saturation is depicted in

Fig. 4, with the average value being 103 ± 15 pm, Final failure occurred by delamination

in the region between the inner and outer loading points, as also observed in the

LAS/Nicalon composites. 1,2,4

Tensile stress/strain curves had the features illustrated in Fig. 5a. Based on 6 tests,

the non-linearity was found to occur at stresses in the range 150-200 MPa, with an

ultimate strength of 430 ± 30 MPa at a tensile strain of - 0.8%. It, situ observations made

with an optical telescope confirmed that the onset of matrix cracking again occurred in

the range 130-150 MPa. Acoustic emission events first occurred within a similar range

(Fig. 5b). Partial unloading to obtain information about changes in modulus provided

the results summarized in Fig. 6. These results are in broad agreement with results

reported by Pryce and Smith. 17 Corresponding measurements of the change in crack

density with applied stress are plotted on Fig. 7.

Tests conducted on specimens with a thin matrix-only outer layer gave essentially

the same stress-strain curves. However, in situ observations indicated that cracks first

formed in the surface layer at stresses as low as 50 MPa. Such measurements

demonstrate the important role of the local fiber content on matrix cracking and

exemplify the need for removing the matrix-rich layer prior to testing.

Matrix dissolution experiments resulted in the displacements plotted on Fig. 8.

Combining the measurements with Eqn. (13) gives the residual stress in the matrix,

q = 89+13MPa.

Chevron-notched flexure tests conducted on 10 specimens of the unreinforced

matrix material yielded a matrix fracture energy, Fm = 25 ± 2 Jm-2. Non-linearity in the

load/displacement plot prior to the load maximum indicated that stable crack growth

had occurred before catastrophic failure.
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5. OBSERVATIONS

The material exhibited extensive fiber pull-out during failure (Fig. 9) with

distributed fiber failure sites and no obvious clustering. A typical di!,tribution of fiber

pull-out lengths is shown in Fig. 10. The average pull-out length, h, lies in the range

250-350 rirm, which is much smaller than that found for LAS matrix material 4 .5

(h = 2 mm). Fracture mirror radii converted into the in situ fiber strength parameter, Sc,

are plotted on Fig. 11, giving the parameters, m = 3.6 and Sc = 2.0 GPa. Dissolution of

the matrix in a specimen loaded to 400 MPa revealed a substantial number of broken

fibers, with the fracture sites distributed evenly throughout the composite.

6. ASSESSMENT OF THE RESULTS

6.1 Constituent Properties

Values of the interface sliding stress can be inferred from the various methods

described in Section 2, coupled with the experimental measurements. The crack spacing

and matrix toughness measurements in conjunction with Eqn. (8) yield the estimate

S= 25-28 MPa. The values inferred from the fiber pull-out lengths, obtained using

Eqn. (13), are somewhat lower, being -10-15 MPa. Evidently, the range of values

obtained through the two methods is broad (10-28 MPa). This is, perhaps, a result of

both the underlying assumptions in the micromechanical models and uncertainties in

the experimental measurements. Similar trends have also been observed in the LAS/SiC

composites, wherein T has been estimated to be in the range of 1-3 MPa 5. The relative

values of -r in the CAS and LAS matrix composites (Table 1) partially reflect the

different thermal expansion mismatches of the two materials. In the LAS material, the

radial stress, F, is tensile and consequently, T is low. Conversely, in the CAS material,

p is compressive and thus, t is relatively high.
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The matrix fracture energy, Fm 25 Jm-2, is comparable to literature values for

monolithic glass ceramic matrices 25 (rm = 15-30 jm-2) Other researcher, have

assumed widely differing values, leading to conclusions that also differ from those

presented below. At one extreme, Kim and Pagano7 assumed that Em - 27 = 80 JmI

and concluded that matrix cracking is observed at a stress below the ACK lower bound.

At another extreme, Pryce and Smith 17 used Em = 6 Jm- 2 , and propose that matrix

cracks first form at stresses above the ACK lower bound.

6.2 Matrix Cracking

The experimental measurements of matrix cracking can be compared with

deterministic cracking stress predicted using stead y-state mechanics. The lower bound

ACK result is first computed as a function of the interface sliding stress (Fig. 12).

Superposition of the stress range at which the first matrix cracks have been detected,

both in this study and that of Kim and Pagano,7 reveals that the ACK prediction is in

accord with the measurements, provided that T is chosen to be in the range 10-15 MPa.

This is consistent with the lower end of the values inferred from the measurement

techniques described above. The model also correctly identifies the effeci of residual

stress, as manifest in the difference in matrix cracking st:esses of the CAS and LAS

matrix composites.

The evolution of matrix cracks at stresses above the first cracking stress can be

addressed by predicting the change in modulus,E. This is done in a consistent manner

by selecting the magnitude of T that gives best agreement with the first cracking

measurements (T = 10-15 MPa, Fig. 12) and using this value throughout. Comparison

with measured values has two steps: i) the change in crack density with stress is

compared with predictions based on steady-state mechanics (Fig. 1), ii) the measured

crack densities (Fig. 7) are used with Eqn. (11) to predictFE/E. In the first step, insight

regarding the evolution in crack spacing is obtained by superposing the crack density
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predictions from Fig. I onto the experimental results (Fig. 7). It is apparent that the

abrupt increase in crack density at 0/0. = 1, predicted by the mechanics model, based

on steady-state cracks, does not happen. Instead, the results are qualitatively consistent

with Fig. 2, indicative of a majority of matrix flaws having size smaller than the critical

size ac needed for steady-state conditions to apply. Complete quantitative results for

matrix cracking in this flaw size regime are not vet available. 22,23 Further interpretation

of matrix crack evolution awaits these models and emphasizes their importance to the

rigorous prediction of matrix crack evolution. Nevertheless, it is apparent that one

important feature, the saturation crack density, is predicted with reasonably accuracy

by the model.

In the second step, the modulus changes predicted by inserting the measured crack

densities (Fig. 7) into Eqns. (11) are compared with experiments on Fig. 6. The

comparison indicates that the model slightly underestimates the modulus reduction for

the same range of 'r . This discrepancty is believed to be due to fiber failure26 : an effect

vet to be incorporated into the model.

6.3 Ultimate Strength

Based on the in situ strength parameter, Sc = 2.0 GPa and the shape parameter,

m = 3.6, the predicted ultimate strength (Eqn. 11) is Yu = 480 MPa, compared with a

measured values of 430 ± 30 MPa. Values measured by Kim and Pagano 7 (505 MPa) and

Pryce and Smith 17 (400 MPa) on this material are within the range of the present

measurements and predictions.t The reasonable agreement suggests that the

assumptions inherent in the non-interacting fiber failure model are appropriate for this

composite. This result is further supported by the observation of evenly distributed

fiber failure sites prior to composite failure. The magnitudes of Sc and m can also be

t The difference may be related to either batch to batch variation reflected in different fiber strengths, Sc,
or to time-dependent effects.
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used to evaluate the bundle strength Sb of the fibers within the composite 15 For a

25 mm gauge length: S% = 0.42 GPa. Comparison with the bundle strength of pristine

Nicalon fibers at the same gauge length2 7 (Sb = 1.8GPa) suggests that significant

degradation of the fibers has occurred during processing.

7. CONCLUDING REMARKS

Some of the mechanical properties of a unidirectional CAS matrix composite

reinforced with Nicalon fibers, such as the initial matrix cracking stress and ultimate

strength, appear to be consistent with available models and can be predicted with good

accuracy, provided that the appropriate properties of the interface, the matrix and the

fibers, in situ in the composite, as well as the residual stress, are taken into account. A

particularly important feature is the existence of a tensile longitudinal residual stress in

the matrix. This residual stress lowers the matrix cracking stress relative to that found

for other matrices, such as LAS. Moreover, the compressive radial residual stress at the

interface results in a high interface sliding stress, being almost an order of magnitude

higher than the value in the LAS material.

The evolution in crack density with stress, above initial cracking, is not accurately

predictable from available models, except for the saturation crack density, which seems

to be reasonably well described. Consequently, it is not yet possible to predict changes

in modulus t with applied stress. Nevertheless, formulae that relate E to stress, 0,

subject to independent information about the crack density have reasonable applicability.

Three issues are highlighted for further research. i) The need to address initial matrix

flaws smaller than the steady-state critical size in matrix cracking models. Such

activPitis ar, in progress, 22,23,27 based on the mechanics of short matrix cracks coupled

with distributions of matrix flaws, using extrcrme value statistics. ii) The application to

matrix cracking problems of interface models 19 more complex than constant T . iii) The
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effect of fiber failure on modulus reduction, particulaly at stresses approaching the

fiber bundle strength.26 Further interpretation and analysis await these results.
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TABLE I

Properties of CAS Matrix Composites Compared with LAS

Property CAS LAS

Fiber Volume Fraction, f 0.37a 0.4--0.5b

Matrix Modulus, Em (GPa) 97a 86b

Matrix Thermal Expansion 5a lb

Coefficient, ocm (106C-1)

Sliding Stress c (MPa) 10-15 (Eqn 4 and 5) 1-3b
10-15 (Eqn 13)

25-28 (Eqn 8)

Residual p(MPa) - 65 20 b

Stresses q(MPa) 89 - 50b

Matrix Cracking Stress, C; (MPa) 130-150 280-300b

Matrix Fracture Energy, rm (J/m 2 ) 25 20-30

Other Salient Properties of CAS Matrix Composite Reinforced With
Nicalon Fibers

R = 7.5pgm, af = 4x10-6 C-1,E1 f200GPa

a. K. Chyung, Corning Labs b. Reference [51
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FIGURE CAPTIONS

Fig. 1. Prediction of the evolution of crack density with increasing stress, for periodic

and non-periodic crack spacings,

Fig. 2. Schematic of crack densities with stress based on combined mechanics and

stochastics.

Fig. 3. (a) Optical micrograph of matrix cracks on the tensile surface of a bend

specimen at a nominal stress of 350 MPa.

(b) Micrograph of the same region after unloading.

Fig. 4. Histogram of matrix crack spacings measured under load.

Fig. 5. (a) A tensile stress-strain curve indicating the unloading modulus and the

permanent strain.

(b) A corresponding acoustic emission curve.

Fig. 6. Unloading modulus as a function of applied stress obtained from uniaxial

tension tests. The model predictions are obtained by inserting the measured

crack densities (Fig. 7) into Eqns (11).

Fig. 7. Change in crack density, R/1, with applied stress, 0. Also shown are

predicted curves obtained from Fig. 1

Fig. 8. Matrix residual stress measurements showing the displacement of the masked

composite as a function of the length of the dissolved region.

Fig. 9. Tensile fracture surfaces showing fiber pull-out.

Fig. 10. A typical distribution of fiber pullout lengths from a tensile fracture surface.

Fig. 11. In situ fiber strength distribution obtained from fracture mirror measurements.

Fig. 12. The effect of interface sliding stress on the lower bound matrix cracking stress,

calculated using Eqns. (4) and (5). Also superposed, as shaded rectangles, are

the experimentally measured ranges of first matrix cracking stresses and

sliding stresses for both the CAS and LAS matrix composites.
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Fig. 5. (a) A tensile stress-strain curve indicating the unloading modulus and the
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A SELF-CONSISTENT MODEL FOR MULTI-FIBER
CRACK BRIDGING

WILLIAM S. SLAUGHTFRt

Din ision of Applied Sciences. Harvard Lniversitt. (ambridge. MA 0211s. ( S \

(Receiced I9 Sepienzh'r 1991 in rei t.,ACi form I Aprl 19021

-bstract-A self-consistent model for determining the equi.alent spring stitffnes', II fiber :%rIk-

bridging problems is proposed The model is compared %kith the shear-lag model for Ideal bondjnc
of the fiber matrix interface, in which case the springs have a linear spring constant A %onipar.11on0
ts also made, in the homogeneous limit when fiber and matrix elastic properties aic idcntical. A th

results from particle and ligament crack-bridging analyses. The self-consistent modce is seen t agrec
,xith these other models A simplified parametric equation is given which approin.iatcs the result,
over the considered range of material properties.

INTRODUCTION

A great deal of interest in recent years has centered around the subject of fiber-reinforced
materials. This is due. largely. to experimental studies that have demonstrated that fiber-
reinforcing can substantially increase the fracture toughness of ceramics. which are normall,
very brittle (Prewo and Brennan, 1980). It is anticipated that if ceramic materials can be
adequately toughened, either through fiber-reinforcing or some other mechanism. the excel-
lent thermal properties (and perhaps electrical properties) which the)' exhibit will provide
a significant technological advance.

It has been demonstrated how a steady-state crack, growing normal to an aligned array
of reinforcing fibers, can be modeled by analysing a configuration in which there are nc
fibers but a continuous distribution of springs restraining the two crack faces (Budiansky
and Amazigo. 1989). The spring stress is a function of the crack opening displacement and
is zero when the displacement is zero. The model material on which the springs act is
assumed to be homogeneous and transversely isotropic with elastic constants equal to those
of the composite. The critical energy release rate is modified to account for the increase in
crack area due to the absence of fibers. Budiansky and Amazigo used this model to examine
a semi-infinite crack growing through an infinite, reinforced material where the fibers break
at some critical fiber stress. This condition results in a zone, starting at the crack-tip. in
which fiber bridging is contained. This zone extends back to infinity as the critical fiber
stress becomes large. The manner in which an "equivalent" spring strength is determined,
so that the fracture toughness is the same for the model as it would be for the fiber-
reinforced material, is the subject of this paper. Budiansky and Amazigo assumed fiber-
matrix interface conditions in which sliding occurs when the interfacial shear stress reaches
a maximum value, resulting in a nonlinear spring stiffness. Only the limiting condition of
ideal bonding. in which the spring stiffness can be expressed as a linear spring constant. is
considered here.

Budiansky and Amazigo used a shear-lag model. developed by Budiansky ef al. (1986),
to determine an equivalent spring stiffness for their model. A similar method was devised
by Aveston and Kelly (1973). In the shear-lag model, a representative problem is examined
in which a fiber is concentrically embedded in a cylindrical matrix. The ratio of fiber and
matrix radii is chosen so that the fiber volume concentration of the composite is preserved.
It is further supposed that all axial stresses in the matrix are concentrated at an intermediate.
"'effective" radius and that the volume of matrix between this effective radius and the fiber
supports only shear stresses. The effective radius is chosen through complementary energy
considerations. Alternatively, Aveston and Kelly defined the effective radius as that at
which the axial displacement equals the average for the matrix, though they did not

+ Current address: Department of Engineenng, Trumpington Street, Cambridge CB2 I PZ. U K
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Proposed here is a self-consistent model f1or determining the equi't. iin1 'pring constant

in fiber crack-bridging problems, incorporated into this model is the method for analrsing
fiber load-diffusion problems that Výas developed b% Slaughter Ind Sand,ýrs ( !991 ). Also
utilized is the assumption. made 1-\ Budiansk% and Amazigo , . that the elastic field
in the composite can be approximated b% a homoeene-mis s\ stem. I icontrast to thle shear-
lag model ox.hich ma\ be unreliable for small eoncentrationsi, the issiimptions, of this
model tend to break do\\n f'or hich fiber iolUc ' onceritration.. Thle ti o models should.
theref'ore, provide a Lood check on eatch other.

S1 LA -( O\SISTF\lt \tNT111W)1\1TIO\

Consider a semni-inlhnite. planec crack dri% en h ' an a\ crace- lar-field stress. rý. The crack
growks through anl infinite miatri\ that is, reinfriOtced b\ anl aligned arra\ of fiber' The fibers
are normal to the crack plane and the crack is presumied to groii. around the fibers, leas inv
them intact in its wvake Downstream (if thle crack tip the elastic field approaches that
represented in Fig. 1. Inl this three-din`Lasional field, the fiber', arc of' radius a and the fiber
v-olume concentration is, B othi tile fibers and miatrix are honiogeneaus and isotropic. linear
elastic solids ss ih Vounec's modulus and Poisson*\ ratio taken. respectivel\. to be E, and I-
for the fibers and E, and flor the miatrix. The :-direction Is defined as that in x"hich the
applied stress. ei. acts iind in v. hich thle fiber, are aliened. ire normal ito the crack. i'ith

0 at the crack plane.
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traction-free
surfacee
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The overall elastic response olfan ali- ted fiber :oripositc can be exprcssed in term )4!
transxersel\ isotropic clastic moduli. A theorv for appro\iniaini t h:e min ! ,uh. for an
arbitrar\ aliimed fiber composite. ha, been deCloped W1sin12 self-con',tnti'"UIent, (Ififl
11465i The fi e moduh are. in this instance. most con'.cnentl\ cn\en i. tic , till,,-,ce (m.
C. . CýI and (., The composite Yountjs mo11dulu.s fo0 axial e\tCii,,on

E- = C(',-2 (C, +C - C: -C z( -IH -- I E._

will also prove useful. For a more detailed discussion of the overall elastic moduli see
AppendiP A. Referring to Fig. I. the followking c.rnditions on axial displacement. ii. and
radial and axial stress. a, and a... respectively. are noted:

atz=0: it- 0 c = 0. c. - f

at•--t: a r ,"' z-0. 0. a7 E,.J. r = E,:. (1)

where 7 =_ d E. is the uniform. fa -field axial strain. Matrix quantities are denoted b\
superscript m while liber quantities are without denotation and represent the aver ,ge over
a fiber cross-section. It is assumed that the elastic response of a fiber. in an aligned
fiber composite. can be approximated byI the response of a single fiber embedded in a
homogeneous. transverý,lx iso.:,pic material with elastic moduli equal to those of the
;.omposite.

The contribution to the far-field axial displacement. due to the passage of the crack in
the composite. is given by

A = lim ( I:.--)d. (2)

The equivalent spring constant. k. that is needed to analyse the fracture toughening effect
of the fiber reinforcement, using Budiansky and Amazigo's method. relates this dis-
placement to the far-iield stress,

6 = kA. (3)

For id2 i bonding of the fiber-matrix interface, k depends onlI on material properties and
the fiber volume concentration. c. This spring constant can be used to model the effects of
fiber crack bridging. More specifically, in this case. it is assumed that the effect on the elastic
response of a fiber in the composite. due to crack bridging hb all other fibers, can be
approximated bý that due to a continuous distribution of springs. relating normal tractions
to surface displacements viai the linear spring stiffness. k.

The self-consistent method for determining A makes use of both th,: aforementioned
methods for approximating the effects of discrete fibers. This results in the assumption that
the reaction in one of the fibers shown in Fig. I can be modeled bN the single fiber problem
sh.cwn in Fig. 2. In this problem the matrix has the elastic properties of the fiber composite,
The fiber properties remain unchanged. The surface at = 0 is restrained b, the linear
springs with equivalent spring constant A, as defined abc~c, A polar coordinate sstem is
defined with r measured from the fiber center. This leads to the following modifications of
the conditions given in eqns (1):
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along Aith the observation that at- 0

lir w"' = A, (5)

For a given fiber volume concentration. c, which spring constant. k. will cause the zero fiber
d'splacement constraint at : = 0. given in eqns (4). to be satisfied? A similar self-consistent
model, for unbroken ligaments between crack faces in a homo. :neous. isotropic material.
was considered by Rose (1987). For numerical reasons to conic later it A Il prove advan-
tageous to consider the inverse form of this- for a given spring constant k (and civen
material properties). what fiber volume concentration c will cause the zero fiber displacement
constraint at : = 0 to be satisfied"

The elastic field shown in Fig. 2 has nonzero components at ir.---- x . This is
eliminated by superposing a uniform compressi e strain r-. = -=- ar - a
a. = - E,6 E:. The problem becomes that shown in Fig. 3. Displacements and stresses no%
vanish at infinity. while at z = 0

kit -A
C-m = An•.

F (I E,')
7z.= •c E .

This superposition facilitates the application of the fiber load-di!,Tusion analysis method
introduced in Slaughter and Sanders (1991[) Fis defined as the load on the end of the fiber.
For a given k, what fiber volume concentration c will result in the satisfaction of eqns (6)?
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THE EQUIVALENI SPRING ('ONSTA-NT

In sohling for the equivalent spring constant, A. in Fig. 3. the model for load-transfer
from an embedded fiber to an elastic matrix, introduced in Slaughter and Sanders (1991),
is adopted. The fiber is approximated as an axisvmnmetric. elastic rod %ith axial stress a..
Shear strains in the fiber are ignored and r,. = r,. 1:.. a, = r, and r. are functions of - only
Constitutive equations for the fiber reduce to the tollokting.

= Ei::+ 2 va_ (7)

Efc, + vrE: -(I - 2v,)(I + v.)a, = 0. (8)

Forces acting on the fiber are an applied load F. at the fiber end. and bonding tractions
with the matrix. T = Tr,(a.:) and ;, = ar(a. j, along the fiber-nmatrix interface at r = a.
The fiber is in equilibrium if. for all z 0.

nalatc +2na,, d:' = F. (9)

The fiber quantities z;,,. 6r and ý;: remain to be related to quantities in the matrix.
In contrast to the problem of load-transfer from a single fiber to a semi-infinite matrix

analysed in Slaughter and Sanders (1991). compressi~e normal tractions. 1(r)
act along the surface of the mattrix at - = 0 where

(0-) = -kit("'ol.. (10)

Over-all equilibrium for the fiber-matrix system requires that
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and M and yý are the roots of

ClIC 4 4 P : 4-[C. i(2G., -C , Ci 1C ]pi-4C.,C, 0. (13)

For axially symmetric fields

and the radial and axial displacements. u and it. respectiely,, are given bx

?•, ?•:(701 O
u = -:- --, t. = K -- ',_ (15)7 rr (& '(P:

cr cr cz C -

where

CI IP, - C 4-
K, =- -+- " (i= 1,2). (16)

C, + C44

The roots of eqn (13) are either real and positive, in which case 40, and 4: are real. or they
are complex conjugates. in which case (P, and &6 are complex conjugates as well.

The elastic field in this problem is approximated by that due to a point force of
magnitude F. acting at the origin in the negative :-direction. along with distributions along
the z-axis of point forces and point dilatations, p(z) and q(:). and the traction distribution.
t(r). The point forces are in the negative z-direction and the point force distribution must
be self-equilibrating;

"f p(C) d O = 0. (17)

In terms of the Elliott harmonic functions, this approximate field is expressed as

=0, f (rz. )[F6(ý)+p(C-)J+4!(r z..)q(') d,+ &ý,(r~z.p)t(p)dp. (i = 1.2).

(18)

where ,•(r. :.z) and ,4"(r. :. Z) are the elastic solutions at (r. :) for a point force and a point
dilatation, respectively, acting at (0. -) and 40, (r. z. p) is the elastic solution at (r. z) for a
ring of point forces at (p, 0). 6(:) is the Dirac function. See Appendix B for a more detailed
discussion and explicit expressions for these and following kernel functions. 4,/' and 4b,' are
well behaved analytic functions for r * 0. 0,' has an integrable singularity, when : = 0. at
r = p. As a result, the elastic field given by eqn (18) has real. analytic displacements. strains.
and stresses when r 96 0. Each of these quantities is expressible. through eqns (15) and (18),
as integrals of known kernel functions times the unknown distributions.



Crack-bridging model 391

The governing equations for this problem are (8). (9) and (10). Over-all equilibrium
of the problem. eqn (I I ). and the self-equilibrating condition on the point force distribution.
eqn (171. offer additional constraint on the solution. Equation (7) is used to eliminate r'
from (9). In order to express the governing equations in terms of the unknov, n distributionm.
the fiber quantities t. a, and c. need to be related to quantities in the matrix. Follo, ing the
method in the solution of the single fiber problem (Slaughter and Sanders. 1991).

:., u"( .-).(191
a

u,= c"(a.-). (20)

For the axial fiber strain.

z: c(2,

when used in eqn (8). while

= iraE,<J H(:--)[ -erf [F~ t•)+p(.)]d+c: (a.:). (a

when used in eqn (9). where H(z) is the Heaviside step function. The relation (22) com-
pensates for the discontinuity in axial strain in the fiber across an applied step loading. The
discontinuity is ntzcessary under the elastic rod approximation if a, is assumed to be
continuous.

Using the relationship between fiber and matrix quantities, established in eqns (19)
through (221. and the expression for the elastic field in the matrix. eqn (18). the governing
equations can be rewritten as coupled integral equations for the unknown distributions
p(:). q(:) and i(r). Non-dimensionalizing in a and F such that k :=, Efk/a,

p(,.') d.- + [r, (:. ý)p(.D)+F,12(:. ,) q(;,)] d; + r(zp)t(p) dp 1 -F,;(0).

(23)

J =p(, + r i(z. )q d)j+ F, p)1(p) dp r-,(z. 0). (24)

,, [,(r. p(,) + F.(r. dq(,)-dC+ 7 t(r)+ F,(r. po(p)dp r -FI(r. 0). (25)

where the kernels Ft (2.f = 1.2. 3) are real functions. See Appendix B for explicit
expressions for the kernels and non-dimensionalizations. All subsequent expressions are in
non-dimensional form. To solve for the distributions, the system of coupled integral equa-
tions (23). (24) and (25) is reduced to a set of discrete linear equations. The integrals are
approximated using the mapped Gauss-Legendre rule and each equation is enforced at the
quadrature points, in accordance with the Nystrom method (Delves and Mohamed. 19851.
The constraints (11) and (17). which in non-dimensional form are
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To solve for tile fiber `,01.111 concenltrtion01. . that corresponds to a gici'n spring
constant. A. requires an iteratti'.e approach Thle transw.rsel'. tsotropik: material stitflncsse'
of the matrix dependi on ( ud. t heietore. so do the kernel funtietons. F, (2.11' = 1.1.3). If'
in estimiate o1f is. used and the distribution-. Nol'. d for, then at ne'.% e-stimate fl~r (can be
calculated from the definition of the load applied ito thle end of the fiber [eyn 16 ]

wihere A it 1"(. 0) and

ti~i.0) V;I.0) [F~t).~ftJ)-E,:f.!)(JfdJ4 F;lr.pfrypdp. (29)

Equation (29) is theoreticall' equivalent to ir"(r.O) -inir) k but converges more steadil'.
during numerical analysis. In this w\a\. the estimate forc is refined until there is convereence.

The results from this analysis are compared with those from the shear-lag model
(Budiansky and Amazigo. 19891 in the instance that the fiber and matrix remain ideally
bonded. In addition, in the limit that fiber and matrix elastic properties arc the same.
comparison can be made wvith Rose's anal'.sis for unbroken ligaments bridging the crack
faces (Rose. 19871 as well as wAith an analysis ofcraek bridging by particulate reinforcements
(Budiansk\ vt ali.. 1988). Comparisons for the case w,\hen fiber and matrix elastic properties
are the same are shown in Fig. 4 and those for dissimilar fiber and matrix elastic properties

Seti similar mode.'

8 - Shear- lag model. /

- - i.gdrln~t bridginlg

1 /4

00 :2 04 06
r

Fig 4. Tfie equi'..ilen Trifleu c~on-lint Nersu. fiber wotticii Coticlltirditon in the honto~eneou'- limit
\& hn tile fiber and niIwi'.eI'ii propipeic, colitiide III iddition to tttc weil-L n-.osent model, result,,
from the sheatr-IaL moii'l IBukbj,kNs and Amla/tin' f 11WO1; palirtICct crkc-hridpttng arnatvsis

IBudiansk\ ci i. lY~. 19xxýitd it licaimcnt crick-brideinne atial\'.o I Ros. 1987) are ptotted
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are shown in Fies 5-7. It is noted that variations in the Poisson's ratio of either the fiber
or matrix have little effect on an) of these models. The following parametric curve-fitting
equation approximates the results from the self-consistent model for the equivalent spring
constant as a function of fiber volume concentration

k = 2C(I-c) . (30)

where

-2 .8 (E +1 (31)

= 0.73-2.73 Eir (32)

Plots of this approximate formula are given, along with results from the self-consistent
analysis. in Fig. 8.

10
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0[' 02 _ I
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Fig ( The equi'alent spring conslant %ersus fiber volume concentration for the self-consistent
model and the shear-lag model (tBudiansks and Amazigo. 1989) when the ratio ofthc fiber to matrix

Young's moduh is 3 and both Poisson's ratios are I 4.
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Fig. 7. The eqwsalent spring constant Nersus fiber %olume conceniration for the self-corsoient
model and the shear-lag modei (Budianrk\ asid Arnazigo. 19 q, h-in tI'- r ,ýi t th7 ' fibc ,

S-oung'ý moduh is, 4 and both Poisson's ratrio are I 4

CONCLUDING REMARKS

It can be seen in Fig. 4 that. in the homogeneous limit of equikalent fiber and matrix
material properties, the self-consistent model is in agreement %•iti• other alailablc model,.
SurprisinglN. the model developed b% Rose (1987) forcrack bridging b. equiacd hitiiments.
which is conceptuall% most like the self-consistent model. exhibits the ureatest. di' ergcen:c
in results. This is due to different assumptions on how discrete crack-brideine hIgamcts
can be modeled bh continuous spring distributions and ho'k the resultine single ligament
problem (or single fiber problem in this paper) is approximatelN solved. Both the shear-lai
model and the particulate reinforcement model agree fairly well with the self-consistent
model.

An examination of Figs 5-7 shows that the self-consistent and shear-lag models
continue to give closely matched results throughout the range of material properties con-
sidered. The proposition that the two might be best applied to different ranges of fiber
volume concentrations is not borne out. The results shown here indicate that either mode&
would be suitable for the full range of concentrations. Ease of use suggests that. as lone as
only ideal bonding of the fiber-matrix interface is considered. the parametric equation (30).
derived from the self-consistent model. may prove more convenient. It should be noted.
however, that effective toughening in fiber-reinforced ceramics is seen to be associated u•
debonding of the fiber-matrix interface and fiber pull-out. The shear-lag model conttue•
to enjoy a considerable advantage in calculating the nonlinear spring stiffnesses that follow
from these conditions. These results serve to confirm the reliability of the shear-lag model
when extended into problems of complicated fiber-matrix interface conditions.

10 - I , ,I
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APPENDIX A

.4prxinac onp~ '0 /oti noduh
Hill 11965) used a self-consistent model to determine appriisimaiels the composite elastic moduli of fib~er-

reinforced materials This approximation is Independent oi the spatial arrangement (if the fibers The onl%
requirement is that the fibers be pcrfectls aligned and the composite exhibit statistical homogeneit ' Hill showed
further that the results from this model fall within houno, established as tile bet~c possible %wihout considering
detailed geometry (Hill. 1964). The composite is transxersel% isotropic isith rigidita for transv~erse shearing over
aný axial plane. ?I. plane-strain hulk modulus for lateral dilation without fiber extension. : Young's modulus
and Poisson~s ratio under uniaxial loading. E_ and i .,: and rigtditt for longitudinal shearing over an% axial plane.
G. The shearing rigidities are given b,, the positive roots of

6- -- - -I- .(

where subscript f and m signif% fiber and rnatrix moduli. respective!%. k% hIch for isotropic materials are given in
terms of the Isotropic ) (lung's moduli. E. and Poisson's ratio. I. hak

2H-will- 2w (A4)

Ustnix lte result from Al ) then the remaining composite moduli are

SAS 30:3-G
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APPENDIX B

Singular .AoIU~lA ioin o irwiii c~r.•xi'h I ropu ehismi htdl-.•pa (c

The solution for a point force acting in a tran,,crsel\ isotropic half-space has been presious!% studied (Shield.
1951). The solution for a unit force acting at ir._) -U .) n the ncgatise :-direction a• required in eqn (18) is
given b"

(P I~4 [n( R, )(--- ) pj-,~j} In( +:

_-C,, C -

"In -±n•i- Icn (A:A-::*L!. + (B.21

8np - P. R-:+- 1

RKC, r-;l -- C

.5 I:-C V.(B:)

where

C" A,(", , pc

Recall the definitions Of 1 and 0, in cqns 13,1 and (16,.
No solution for a point dilatation was found in the literature Therefore- with the nature of the self-consistent

model considered, a unit point ' dilaiation- at A.,) is defined such that the net normnal displacement through an
tnfinitehy long circular evlinder. with ccntrodadil axis coincident Aith the approaches unit. as the radius
approaches zero. The elastic field is axis1mme3ric This condiion is not sufficint to define a unique solution. The
solution used in this application, chosen for conscnience. is
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, here
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denCd t ron the poit w torce sohalution Iet.', t HBI and l tB2J rh" rt, e1ic ,.e1 -,.
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I I Int.- -) ,do. 1 3121

,A here

[? x -.. r :-r: p:- 2rý, co, ; 1 Bt-",

This rinig has a ri,:i force of 2p.

Exprrssion% /,r required elasic qulawme.

Listed bclov, are those elastic quantini, that arc needed for the impiernentation o(f the wlf-con.,siqen model
The% are given in terms of the Elliott "harmonic' function, o, and 0: as deincd in cqns I 12 i I 61

u a). .l -0,). (B141

7 (C : i -K, 0 (BIS6)

r r 1 :-

o, = (c,,r, +C. )p,(4q" gP- + )- :-C ( .15'h ' - )- - . (BI7)

Non-dinen.xionahzations and kernels for the coupled integral equatio.•s
"The kernel functon.s for the three integral equations 123) (25) are arrived at b.> substituting (B14)--BI71

[with 0, and ip given by 118)] into the governing equation-; (8) (101 using the fiber matrix relations (191-(22).
To non-dimensionalize with a and F the followsing substitutions are made:

:-.a:. -. a,. r-. (r. p-op. A ---- 4. pl.) -. p I.

F F I I a
q( i, q(. ~1(p) -a--" lIp). i sE "" & d40. and ,

The resulting cxprcssions for the kernel functions are

F,, B tt: - erfz-, - • i: -• 1,,2,:- 1'• 0 1

, I -h,)o I - t, to. -l . . 181

,r,

I , -0, -, M9)
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Damage Mechanisms and the Mechanical Properties of a
Laminated 0O'90 Ceramic/Matrix Composite

Dou glas ý'. Ilecrlc* N Mrk slipcaritig .utd A.ntlti n' I Nmis'

matcirial'Is I)tp~irinicit (-I 'Ittgc , if lngiiucrini4I tit csrsil ut if a It if,.in ".i. sa t i rt. c rI ( .I I a'r ni,,c 1

The tensile properties ofla 111/901 laminated (CAS mat rix coml- 'Iable 1. Initial Propurties (of t (oust
posite reinforced v~ith Nicalon fiber-. hase been measured.
Some effects (if no)tches. have also been explored. C'hanges in [

modulus and permanent strain causedl b% mat rix cracking
have been measured and compared w~ith available models. 161'G.1- 1. 1
IFor this comparison, independent measurement% have been j! i

made of the constituent properties and the residual stress. IN q t J;
The ultimate tensile strength has also been measured and eIL,1 rCC IPI
compared Asilb a global load-sharing model. It is concluded ~ ~ \l '(

that loAser-hbound matrix cracki ng models prov idec g4ood pre-T.Il
dictahilits of the stresses at which various matrix cracking m'~i-

mechanisms first operate. Also, the ultimate tensile Mo r....,k'd,,' I
strength is filund to be Consistent with a global load-sharing I

model, based on the in situ strength properties of the fibers. I~'-..

('onserwely. the evolution of matrix cracks at stresses above N- .'.:..x ' i

the lower bound has yet to be adequateIh modeled. In addi-
tion, a need is identified for improved models relating A ~ ~
elastic properties and permanent strains to matrix crack "

spacing.

1. Introduction
fit acrscopc tnsil prpertes f imdirctioal on- has inLc relex ance to these nmacroscopic quantities Isurnmariied

T tinou m eroscopincfotendl proeramcmtrixso cmositesono WC)f in Table 1) include the interfacial slidinye stresses. -, the elastic
ha. teenus etiber-reintudied andramelatedit) thempositus proper- properties of the fiber and miatri. L, and F,,: the fiber radius. R?.

have bee extensiels studed and rlated tothe in situ prprfh ost iber stremnth . S the niatris. fractureeers I',. and
ties oJ the fiber, matrix, and the fiber coatirie. 'The main etfort th istsranI.wihidiastersdultessSoc

has been concerned \P. ith clarit\ Ing the role of the interface. In of the basic formulae relatinp the linval, properties tit fihe ]anti-
terms of the fiber coating, and relating its properties to those of' nated composites are summari/.ed in I-able 11 -The correspond-
the composite " There has been a more limited effrt attempting in relatiw pfrtenlnarcmoterprisae
to relate the mechanical performance of 2-D-reinforced CM6,s ionshiptosiformtoabu the nolnadomposite proeriaes m are
to the constituent properties. Prelimlinary attempts were made sbjttoifraonbuthedmatdmaemh-

on atl/0 lmintedglas cramc mtri coposte ithum- nismns, Assessment of such mechanisms insolves ex~periments
onalu0inosilicated LiASt reramiceed trith icompofibers blthut that observe and monitor the domtinant damage phenomena.alumno ilicte.L/Il renfoced ithNicaon iber."'but Such experiments, are conducted in this studi, and damiage mod-
with limited attention Civen to relationships between the macro- iaruetoainlzehemsrdnnierpoe'e.
scopic composite properties and the in situ properties of the esaeue ortoaietemaue olna rpris
constituents. Miore recently, progress has been made on woven
coimposites. consisting of N4icalo~n fibers in C-based mnatrices.N II. Experimental
The intent ot the present article is to conduct a comnprehensise
stud% that relates, the macroscopic properties of a 0'90 laminate (1) Procedures
Ito the in situ constituent properties. The material of choice is, a Experiments, \kere conducted on a CAS matrix comlposite
calcium alumninv silicate CASi reinforced %%fith Nicalon reintorced with Nicalon fibers, in a crosspl\ 1iti 4(t,, contligu-
fiberis." because man\ of the salient in sito properties ot this ratiiin pros idcd by Corning.` The noi'iinal pl\ thickne'ss.
comp~osite s 'ystem hase been obtained froni measurements per- t = 81) p.m.n All test spec~imens wNere cut fromt I 5t-iniii
farined (in a unidirectional material processed in the same man- I 3tt-nmt *. ' 1 1nin plates, 7e'Idc %pe, mcn' \,%ere prepared byý
ner' The principal iibtcctixes of this stud% are to measure and machitnime beiams ha\ in,- diiiiensions Pi ni) mii 3 iini 3I
rationalize the tensile properties along one of the fiber direc- tlitt. tilliixed by poilishine. Aluminum tabs were bonded ito thc
Itiins and to pros ide preliminary Information on the influence of ends to ensure uiiitornu load transfer and tol amoid crusliin, ot1
notches, the specimecn. Strains \%ere nicasured along_ a Lauic lenuth

The mtacrioscopic properties of primar\ interest are the elastic us.ine- an axial e\tensonieter tin contact with the s'pecimnct An
nioduli and permanent strain (as influenced h\ the applied loadi
and the ultiniate tensile strenoth. The constituent properties

Table If. Formulae for Linear P'roperties oif Laminate
4 4, = I,., = I I

'onipoisiic nio dutus. 1. f L
kesidlual sqre.s. (r,. - t-, ["
Stress (inl longitudinal r'he'.. (r, - (Y, I-

Mc;,,l', oni~~ Irn',c~ ph( C!JI, -¼ a 1



cmisU iiss.ioi technitique anrd t ratseline unctroscirpe %kcre .- .'

cnipt phied to nionilor dlaii u c Secscra I tcs ss'l %CIL cpc ri tn Wi

"k III either pirnial iii lull unloaditu-' , onduc:ied at discreteL straliii

fie~rs als. i, nccdcd it, deterittine Ib I hang In Unloidt IIel! 1odt-
ulus and the: lcrtnaticiv strain. a,;- tunicioit ol appihed sires'
Soniic spe,.iniciis scecdee--noichcil u~nie- a diainiond sas\ prlot

to csniiie in iird,, to .isccriain thIL mitch propcrtics L nkmadcd
spccmnticis and li acltuc sort dcc' ss crL characiertivd tit the 5sdit-

rnii:eclectron iniciroiise oI SIj IVI
'I ý%k t\ PC, kitt h I 111 t, \o i serc c, iidjc tcd to c \phititc both if

tensilhe mid Nhex dalnJi'x' i-O il c sUd% ot tensil c I has ii . tilc
flexure beam's Ascrc tý p I,:l I I uitt nun Immn. and
thc test, were conducicd in toinu-poini ttcndinL. ss oh ininer and
OUItet spans tii 21t) and 4(1 ninm. respecims ek. One side lace and
thc tensile tace sserc Polished to enhance mi'croscopic Iainmirg
To detect damlalze. expcruiient' ).%ere pcrformned III situ ikithln
an] optical inIrsip.Piototnuc r graphs mserc taken under
load at a series (it stress levels in order to document the tormia- Slra!n (0

o1
nion ar-d priipavaiion otidarnutc. such i, maturi\ crack,, In some
cases. the loading- s"as Interrupted and then resumied ito tailure. He . Tensile~ trv.iaj tot nit ow mm iniicmtri.oj O*.rimp~cJ
To investigate th~e shear characteristics, short tiexural beanis nt!t imletlmIimira

(25 mmn I sserc used Again. the side faccs \s,,rc polishe-.l ini
order to flsestimgate the darnage in situ in the SEM. Interrupted
tests were also used. Iiiii in the double 901 las cr' ti-r- 0) 'hc satUr-aItio :r,l~k Npai.

A tc\, specimens \%cec used to measure the residual stress mu, obsersed in unidirectimmnal miaterial ss as 1013 pm
For this purpose, a series of crosspl\ laminate bend specimens Subsequent to tensile Itamure, SUMi esanuIMIXOn resealedl a
wvere mounted oin a steel plate and .surtaee ground until onlN twAo relatiisel\ planar mode I fracture. \knith extensise pullout tot the
laminae i a single 90' laye:r and single 0: layer) remained. tUpon fibers within nfe 0' plies, tFite 7,Ai) Measurement tit the pull-
remos~al (runt the mount. bending occurred and the radius ot out lengths h gave the distribution SU"InTimriie In 71ic B).
curvature was measured. The residual stress was ascertained with an average ialue. It = 285 laim msimilar Ito that tfound for
fronm the curvature. using beam theors (Appendix A. Eq. unidirectional material'.
(A-4)). The notch eharacteristics are dominated h\x multiple delain-

inations that occur irom the notch tip (Fitz Ki The nominal
(2) Mfeasurements and Observatiqns enerrv release raltts associated w ith the -extension (it these

(A) Tensilt' Behnavior: Tensile stress, strain curves had the delamnination '.racks are thus relatisl\ laree and exceed those
features illustrated in Fig-. I1 Nonlinearit,, occurred at stresses found for 01'96 LAS composites,
in the range 40--601 Mla. following an in'itial tensile modulus. Double-laN er W1901 lanminae (prepared for residual siress minc-
E -(X) GPa. with an ultimate strength of S,, = 230 t 201 surenients. as described ahouset were found to hae radii of :ui-
MPa. at a tensile strain to failure. v, U.8r,,. Corresponding vaiure in the range 450-81K mm_ The residual stress
changes in tensile modulus obtained by partial unloading by 25 determined from this curvature. using, beam theor\ (Appendi\
MPa. a,, well as in permanent Strain, are indicated on Fig. 2. A. Eq. (A-4t) is arr = 25 -5 NiPa.
Acoustic emission events first occurred w,;thin a stress range (B) .Shear Behmiia-r: The nominal shear stress, dis;place-
similar to the onset of nonlinearitv. Flexural measurements ment curves measured on short beams in flexure exhibit rionlin
obtained with lorn. beams exhibited similar characteristics, earitv at a shear stres-, of about 50 MPa and a peak shear stress
with a nonlinearity at about 60 NIPa and an ultimate strength of of about 85 MPa. The first shear damage to be observed con-
about '320 MPa. Optical observations perlormied in situ (Fig. 3) sisted of a fesw matrix cracks that extended through both the 0"
arc summarized on Fig. 4. Matrix cracks first developed at
stresses betsseen 401 and 50 MPa. In all cases., the first cracks
were obsersved InI /the central 90,90 double laver and alwavs i

spanned thie entire double ply but arrested at the 90'(0 interface". a all Matrix Lfrainq
Upon increasing the stress, ttm about 50-6(0 MPa. matrix cracks t

appearcd abrupils in all other 90' plies and additional matrix C 12 -
cracks developed in the central ply Again. these cracks
spanned the entire ph% hut arrested at the laminae interfaces at W to0 - 0 0

00) MPa. The Crack spacinp, L in the single 90'~ lavers was sub- ti '50
-No cracino -

stantialls less than the crack spacing in the centralI double 90" 1 0 I0 0
phX. Matrix Cracks, in alternatinL 901 lavers were never coplanar.07V
hut als\Aavs oftIset 00 I N

Upon Increasing the stress to about 70-8(0 NPa. no further E 06E

cracking was observed in the 4(1 lasers, as indicated bi, a plot o
oh the Inverse crack spacing IL with ses(Fig 5i. Hossever. 004 - 'rann 8

the~~~~~~ preitn rcsb n toi extend into the adjacent 0I' la%- Sri
ers This protcess occurred stablx with increasing, stress., with 002 N Mouu 0 0
out obis inus fiber failure At high'er %tress. around 1101 NPa. theMoas
extended miatrix cracks overlap'ped in themW lavers. Eventually. o[ at .pi I . 0 0 3
at -17(0 MPa. these cracks entered the adjacent 90- lavers (Fig. 0 20 4G 60 so t00 120

3(0) and reoniented toward preexisting cracks. At this stage. Apptied Stress (MPaI
fews fib-er failures, were v isible. Alter testing to, failure, the aver-
age crack spacing d in the 0" lasers was -~ 150) pim compared Fig. 2. Chanve, %k ith applied stress in untoiadirn tensile nioutjuus
with a spacinL L. tn the single 90'7 lasers of - 2(X) pRm and -3()upo~n partial unloadinL hs, 25 NINa and pent-nincnil sira~n
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r%

(A). '

Fig. 3. Matins crac:ks oh~erscdII in ( S Itu IhC e IC1 o Tic lll:ll I A i''p ltre-ed l Ti, -1 i .\11 i .iu, '~ i

and 90' plies. at in inclination of' - 35 P 9(A0 Hov~eser. ALI. Ej , ILI
these cracks originated from p-es iousl\ brined .ensile matrix
cracks. At hiuher stresses, damaee! tended to concentrate in the at
matrix-oni% reeton (Fit, 911ý nianife:, a,, an cin etln'lon crack= -

arraN. inclined at -~6ý These cracks eventualls, coalesced.
leadire it) shear failure b\ fraementation of the* natrix-o)nls \A, IIh the subscripts I. andi T retemrn2 to lont.itudinailans tian-
laver. Analogous behasior-has bleen docun rued for unidiir,:- 5efsL pl ies, andi t!X i Is, the unictioin plotted oin Hle i B)
tional LAS composites." is the enert:s tor miatri\ crackine: in the iransserscLici.ese

Ill. Models or' Damage and Failure F, F, I I fI

The nmilnencriiN in the stress ;train curves tound upon ten- wsith f beine the htibe :oncentration The relevant critical stess
slon and shear cestim, mu,, he gos-erned hlx the inair-I cracks, in the fro'nsticric', ler\cr (y, (uhich arises Er-nm the applied loads,
whereas the ithian't tensile sirength should be dominated b'i plus the thermal expansi-.i inistit) is gisen b\
the properties of the (cherai and vtcierlcice'a. sub ' ect to %eakcst- E 4
link statistics. In order to simulate the mechanical properties ~ Lir-hL
dictated bt matri\ cracks. two types are of interestIt I) gu11nm'- vi.here F, is the misfit strain betwseen the lomni~iudinal and trars-
incg crack,, in 9W~ lalers and it)i normnal ainatr cracks in t- la\ - .erse plies I xshich is related to the residual s'tress. or'. Tabhle 11
ers. F-or both types. it is, nece'SaT cc. it, "rmtrnir: the applied and IT is the applied srs.The macnitude ot1 theap/- rv
loads that cause the cracks toi form (subject to resicluvl stresses), at schich tunnelinv cracks first occur. or .can oe derised h%
as well as evaluate their Influence oin the elastic moduli and the equatincr.L (Tto Y..
permanent strain. -nal\Nes ol these i1f-ecis are p~esenied )[TV ] i
belowA FE [ L '

(Ij Tunneling Cracks in 900 Layers -E[L:, Eal - oj I'-~

,A)j T-Pi.%lc Loaclin: -.~ nal %es oit tunineline, cracks pro- The reles ant rniaenttudeý (if the elastic miodulus L and V
silde the batAerciund needed ito predict the fornitu on 0 cracks require solve discussion 1 he niacnitude ofL A, bc;.I indepen-
in the 90) lasers, Tunneline cracks, arise "shen tiaws, preekisi dent kit the interface piopertite. is .kc11-,:hned acnd --isen b\x
that spanc the laier thickness and then propacate alo'ne the laser
(I-ic I I -N 1). Sulch initial lavs' are c-ýpectcd in CNM(\. espe- Olt". I i. 101S

anll trnat edec. aused misti streshe prinind tcts ipalhfeatur o Hfloseser. f. depends, onl the Interface and] the expansiocn niistu
and heral snasco mititstrsse Th prncial atre it u'. -ii -encral can he cespressed as

turnnelinp crac:ks ot prcsent rcejesacce is the existence (it a /oil -
cr-boicac. 'tcads -sidic. erackmneL stress IT. . that relates, e\plic- I -I /IL..1 - (IA L I
W\t Iic the laser thickness,, t. throuoh the niondirnensicnal I IiA7)- l
funcction I II Q1I (L" " IJ.AL

cr1 iv 5i it Is [' ý\Ihere (Idepends oin the spatial arraneehient ot ihc fiber, but
t' pieatlx has nsaocitride. QI - 2. 11 thte tilier and thec matins a~c

where ý is an elastic mismatch parameter. int mUutual contiact. either because the interfaces are boinded (IT

cii-- m J h,l Ihr, -- i i n fL Nln - mv -- it', nic- Ij- i hiiI t
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900 Layers

%k here H is Ithc crjAc iiiclindiion v. itl respect~ Io, the pl\ norl,11-~11 ,,.1 . shINhi reilvtd it, thk- rcsidU~ill 'trCss o, h%

....... v ith i hem--, tile lix t thiic:Knes and V the relex .ini I rajltre
... . ... - cn.enrex, Combhinin- Eq, N)i and t0) lc.id' ( til.s C~piiclr icI.i

iii inship he:ix~kcctl 7' and o, Mi ll piecu. L-s in: i ,. cyc .11
.....-.. ** hie-her shear sires'. analoetius to thui found in icrisilc loadin':

~ ~ *..(2j .llairix C racking of f0i Lave'r
CraksPe~tai ~Upon tensile loadiri -- cracks in the 140' lax e precede those in

100 Layers) 2 P the 0V la% er a nd. I t rthermore. t he laut Iterfor h\ extension of the
prex ous'.\ formeid crack% in the WO la,ýrs Connsequcnitx. the
CraC k in - problem in t he 0' pli es co ninic es \,. ith a p line straijtn
matri crack ot lenu.th iIF~itz, tti An that suhsequentlx% peni.-
trates the 0t tiher bundle', In ordeitoi obtain appfnir-ýial timit-
Kb of solutions hir crack p~enetratioln thatilluIstrate the Ike.

* ,~,.trends. consideration is tirsi -ixen to identil'.inc ilk most rca-
- .. . liable si mplitilcar ions eonsticemine the rclatiii,: lix er thikck ncs

-. . . . . .. .

CraCKS Overlap And &l2O P a

Arres, in 00 Layers r, -

on direct libsers itioni of ithe I\c rindic~jicd on I-I it:

beocause the\ are subject to it net compression tresidual plus ~~:
applied). then 1-. in Lq, 17 1 (tice tranlsxcr',c iniidultli o1 tile
tiber,. L. Ibiwexer. it the inierteces separate upoii Io~idiiy., /1,
xuoiuld be mouch smaller, f-or the present coimposite. "x hich has a
~weak" intertace, interlace separation is tikeix to OCCUr- \%hen*
the 1ratisserse stress ~excds fihe residual ciutlpresxtin tl file mair- C',ac Sracmp ii-
interface Atthis stLuie, there %kould be anl abrupt drop In
transverse modulus If %kill he shoxin heLo~k that the c\pcriien- Fig 6. (riniul~ii,tsc kisrihuiton. oi cr~ikk Act :1 aler dur.- '

tal result,,s arc conisi stent with a separated i nterfauce (EK. -, UIi 0) l\r, 90l 1 s ,1i dmill:it j 1
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andstffes. s w lla, te ailremoc n he - unle. he enth I pe% ow aalse,' t asben OLIO ha E II

over~. th prole consist of: a crac peertng it

aeund tifey. a~wl sthe brdigtacilorems d in(1) atheN" Thhnle h en~i. In~ pre ibeome.,, e;ith~benfud htL

what.-ri the ainteatrefatcte cracinm phresanomienon crank hpeneuing k easmdta rtcl-tesbsdtair rtr
dipateed t Nea a thuse cracktip h iocn teit'.~ e, the crac More- Frappelies "ise hs mt-no,,sei K a loN eae
over, isrlthed problhem conistrs% inei aackpneratn int, aý to 2h e rcin y

Eic'r),: 'T~ El dil

where. r is the dinterance flidnt thcrac ente and 2( the crack oeig1 .

Fig. 8. Resti oit notch tests shouin-- miultiple dcl jmindiiion cracks
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The niacuitudc of ý has been a'.scsses( hod) hs tnhte cleitent

67 ~procedures andl hi, din pprmn\iiatc elasitC11% methond. %\ h114.1
IT, - 1141 aerees l %% li sth the nunmerical result, The laticr is li I ot

Ri I iequal number, ol 0 Lind 901 plIVc b%

2.u 1 (T. here v, is Poisson's ratio. Hence. b\ usnemia.~ 1l~(1~j(( %aluv'
K. 2( H +I R r of i-L. both T and I, mia' he calculatedi

The modulus, changes, that occur "hern the tunnel crack,.
For ceramic'rnatrix comnpositeN. it can be readilt, ascertained extend into the 01 bundles ha\. not ' et been calculated Consid-
that X, and A, are both )f ordcr uniti and rance bet-ween 0. 1 and eratton of a lowser bound proiides, Mline perspeeti\.c Wltrhen the
10 (Table l. This range is used to-address the trends pretficted 0I' layers, have lull\ developed matrix crack, lit ,tress ir . Lq
bý hqý ( 1. Additionaliv. the inmportant range for u is between (20)). the unloadmin modulus of these lasers E, upon lull
I and 2. With this background. plot% of~r url as a function of ulaia hndisls hntestrtinsfe eiie
(Fig. ItI illustrate the majlor trends. It is apparent that. tor this EL, RLA( -I I't' r 4 DiL± -,EI .s(d R)i 2i1
range ofAK and X,. the cracks, penetrate into the (W' bundles at a
critical stress. 47,. SuhsequentlN. the crack,, extend stab/i r. SUb- where (T is the peak stress (applied plus residual) reached in
ject to increasing load until they exit the 0' bundles. Thereafter. these layers and %s is a compliance tunctiiin of order 1 .01)- .2. A
thev grow? unstably across the next 90' laver. Consequentl\. the similar expression applies for partial unloading.'' B\. know Inc

stres u t ( 2 wvould tvpicall\ represent the maximum hoxx dichanges w~ithstesý,.E.17 rkcalo rhun
stress at which matrix cracking occurs. This stress is obtained for the change in composite modulus \k ith trs.The corre-
from Eq- (I 18 as spiondingpermanent strain is,'

oric, .56X, - 0.67 - (0.82A, (20) _ Ri) -I 1 qVrL. 1, 2 i

The loadine range wherein changes in modulus and permanent 411//~J.VI~< c
strains are associated wsith crack growth across the W~ plies is
thus bounded bi, the stresses iT, and n< I Fig I I) where 4T, is. a-ain. the net stress (residual plus applied i reached

in the 0) plies.
(3) Fiber Fracture and Ultimate Strength

Final lailure of the composite is coinsidered to be dominated I V. Comparison hetimleen Theor% and Experimnwt
bv the fibers in the 0) plies. wxhereupon the ultintate strength is,
deterniined b\ consideration iil sscakesi-link statistics. B\ (1, Initial Properties
assunitni that both the debond cenrex and sliding stress are
small,.uc that the fibers are noninteractinc. the matri.\ allows. A comparison betiixeen theoiý and expteriment can be made
Iliad transfer throuuh the interfacial shear tractions. %k ith Llobal by first evaluating, the elastic pr-operties. the residual stress,, and
load sharingz, and paramteters such as the pullout length and the the interface properties. lollo%% ing soiiic vceneral remarks that
in situ tiber strength can be e'.pliciil\ linked with t.Followx ino provide the necessar\ cointext The overall residual stress in the
this approach. th~e ultimate strenieth of the composite is pre- plies. IT,. caused b\ thermal expansion anisotropx is, biaxial.
dicted to N2 with the noiiial and shear stresses at the pl. biiundaries beini-

Zero (except near the edgesi. Hossevcr. prior to bondine (if the

S,2 211-ii 1. plies, residual stresses exist within the fibers and the miatrix.
5lnt ,. 21 I chardc.*ý.rILCCd b\ a comipression p) normal to the interface and a

longitudinal tension q in the matrix having magnitmude, ip=
where], is. the volume fraction oit the fibers in the longitudinal N-62tta. q -- 85 NMPa(. Upon bonding,. both I, and q are
orientation, tii is the \%eihuall shape parameter and S 'is a charac- chanized-ql uniformly and p niinunitorml\.
teristic fiber streneth. The values of S ,and inI fo~r Nicalon fibers Whien a stess is, ap~plied to the laminated onipiisifc. p) is lur-
in CAS have been obtained from mneasuremnents of fracture mir- ther reduced and interface separation ma\ occur This situation
mrsr on broken fibers in unidirectional material (Table 1). The leads to uncertaint\ ahout the influeceic tii the fibers oin the
ciirresponding result lor the average, pullout length ts- transverse modulus. liisexcr. ciimparisoin of the mieasured.
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initial composite modulus with the values expected, either for model is smaller thin that lound experimentall% (Fig. 1 2iAw
an intact interface (&, = E, in Eq. (7)1 or a separated interfaces The reasons for this discrepanc% are not understood. Also, the
(E,, 0). indicates (Table I i that the interfacees can be recaurded permanent strains caused bN 9'4) tunnel cracks are small, both
as separated. such that the effective transverse modulus. E, b% measurement and predict ions I li,-. 12(B 1.
50) GPa. This value for E, is used in subsequent comparisons (B) Loungit'udinal Plie,%: Comparison betwkeen theor\ and
between theory and measurement. Based oin the above choice experiment for cracking ot the ff plies is achieved bs first comn-
for E,. the beam curvature measurements (Section 112)1 indi- paring the calculated (Eq. 118)) and measured %alues of the
cate a residual stress. (y, = 25 =5 MPa. This value is consis- stresses. o,. and r[., at which cracks ta) just penetrate the 0'
tent with the magnitude expected from the thermal expansion plies and (bh have extended stah]\ across these plies. For this
misfit between the fiber and matrix (Table 11). purpose. it is noied that A, and X. are in the range 3-5 and 8-lI0.

The interface sliding stress T,, can be estinmated from the fiber respectively. giving the range of predicted crack eroxwth 'tresses
pullout length (Fig. 7(B)). using Eq. (22). by assuming that the plotted on Fig,. I I' The predicted rainge encompasses the inea-
in situ properties of the fibers arc the same as those found for sured values oifnr,. and (T. despite the siniplification concerning
unidirectional material' (Table 1. Sý = 2.0 GNa. in = 3,6). elastic homogeneity used for the calculations. The basic model
Then Eq. (22) gives , 13 MPa. This value is essentially the thus appears to be reasonable.
same as that established for unidirectional material.' even The change in modulus and permanent strain induced b\
though the residual stress. p. has been modified upon forming cracking, of the 0" plies can nkm be predicted based on the
the laminate. knowledge that cracks begin forming at -80) MPa and saturate

(2) atri Crakingat -170 MPa. Then. by using the measured crack spacings.F
and t, arc predicted. Th6 calculations have been performed b\

(A) Trano'er.,c Plies: The stresses at wvhich crackine of aotn h olvn ooeiainpoeue h ie'
the transverws~ phe.\ commences can be predicted by assumiing, are cosdrdto be dis'be nizatorni proedure. Therat viber
that the turnnelin- crack mechanism obtains.whereupon Eq. 15) umne fraction if = 0t 19). and the matri\ is assigned at composite
niaN be used in conijunction \k ith thle properties indic~ated oni modulus based oin the properties of the laminate. Values of slid-
lable I and gi obtained Irom Fig. I~ti hi,, iý 1.5,.', The ininer int. stress in the ranec. -r. 10-20i MPa. are used as, ascer-
double 9'~ laver is predicted ito crack first at an applied stress CT, tamied both in this study and in prev ious analye. Comparison

S40 NMPa. whereas cracking, of thc oither 4MI lay ersý is expected ;A ith experiment IFiL. '13) indicates that this' approach sieniti-
at stresses, r =-60 MIN. compared ss ith measured silue\ of cantly underestimate,, the modulusý reduction found experimecn-
40-501 and 50--60(IMPa. respeetivel\. Consequently. the pre- ta~ls the,-. 12(A). Furthermore, the discrepanc\ is larger than
dicted sequence 01 cracking bet~heen lasers, as \xell as the lesel thi presiouslh lound Ifor unidirectional material-' A moldel that
of stress. is consistent wkith the present measurements. validat- more complete.lch incorporates the compl iance of the combined

inc he tnnelcrac mec~inint. t90 crc cininuration appears ito be necessary before mod-
Inscrting the nieasured values of the crack spacing, (Figs 5 ulus chain-es, can be accuratels simulated. Conse'rscls. the er

and 6) into Eqs. (24i and (251 and using the nicasured alu'es of maneni .-ri prdcini qiei.od(i ~ .eren
the elastic properties and residual stress (Table 1i. the niodulus lfthouch the same interlace model Iis used -Similarls 1ood
changes and the permanent stress. caused by cracking of the 90' agrceement \kth the models, .\a-, found for unidiretctional
lavers, are predicted and compared with the experimental i~tra.
reisults on Figs. 12(A) and (B). respectivelk. The comparison is
based on the independent knowledge that cracking (it the 90' (3) LUltimate Strength
plies saturates at -X(0 MPa. leading to the distinction between The interlace sliding stress. -,_ and pullout lengths, are esscn-
crackin- mechanisn-s indicated oin Fig. 12. Wkith this specifica- tially the samte as those previouslk found for unidirectional
lion, it is noted that the modulus decerase predicted by the miaterial.' C'onscquentl%. the fiber -strength parameterS and the
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Wethull modulus. in, iTabik 1) should he the same. pros ided Ashere '_ is the rains of? '1 iun. , itiodutus IJ 1 is the bcnim
that hher degradationi Cflcts ý.aUsCd b"s proccssine arc similar Isdthý And K~ detines l~ the110 lsipofia h Oi~c-ii~.mrAl .sis

in unidirectional and 0I 40t materials, \ ith this assu'niption. the
ultimiate strength predicted b\s [q (21! is -'il \11'a. compared t, '* 1 1 12I1-1
svith the metasured \alu. ot J_-10 -_ 20 Ml Ra. The at.reenitent i, [iIi' the peselit sisi1Plssitk, ./ 1t -,f il. I Ii ,Ii
"otid and consa'tcnt ss iti the heha\ ior founid lor utttdprect:ioiiall Is aid- i-

mtatcrial.

V. Concluding Renmark%.

The basic niatri'. crackine niodels tot 0 90t ceranic miatri 5

composites appear Ito Pro% ide a reassinahl% accurate description
ofl the :mnli~mi( of erackino- Hoskescr, nodels oh thle Inftluience Crk~ lettth
Of such cracksk oti thdi aci modulus T are less Sat1'IisCtor.% I/ Meani c~rack sp1.1, l:Inc i(I p1 ic'
even \k ith independent ititormaiion ahout thec crack de!nsits I Vou ,,n oh diulus otf iip st

Furthermore. models lir crack e- olution %\s th load are tiot is cii Plaine strain rioduilus_ F I I -

developed. If is, thus concluded that impros ed models (if crack 1. `ine K lioidultsi, Itl iiifir'sll, shihict I II kilaiiiic

evolution are needed in order ito pro% ide constitutis laim ssuit- 1.MiueK iod~ilut.) Of 11Crs
able for design calculation,,. includine, more sophisticated rep- Vi 'Ounu,'K modulus sit mali i
resentat ions of the interface Properties' and ot the effects otf Longitudinil ioduiltis ot ph\
matix' crack,, on the elastic cotmpliance ` 1, _Iranss erse mo1dulusl it phý

Residual stress, and Interfacial effects iasec been sho\.% iito he I Fiber Olulnte traCliOn
of considerable Importance. It is. nec~essary to have independent T unnel craick parameter
knois ledee of the associated misiti parameter, in order to pro- hi Meao fiber Pullout length1
vide mieaningful predictions (if matrix crack formation, It is k, Tip stress intensit> fac:tor
also neccssarx to knokk the matrix fracture enersn. 1. Niean crack spainem- in 100 lasets

The ultimate strenuth S, is found fto be con~sistent 11 the ni Shape parameter tor tiber sircmneth' i \kcibull
predictions of global load-sharine models, and to have i ýorrc- modulust
spondenceisith S,, for I-i) material. simply through the reduced 1) Residual stres,. normal to interlace

hber volume fraction in the loading orientation. q Axial residual stCess in malins
Finally, the elastic modulus in the 90W laver is fihund to be R Fiber radius

unexpectcdlit low. This effect has been attributed to the weak . Ulttmate strenieth
interfaces. combined with the residual tension in the 9W' lasers. S In sttu fhber strength parameter
The residual tension seeniinels causes the interfaces to s'epa- I h hcns
rate. even though its magnit-ude is too small to predict actual 11 Matrix laser thickness
interface separation prior tii loadinie. This discrepanc\ has yet T Sersrnt
to be resolved. it Crack opening, displacement

Or Applied stress
(T Stress at which crack tn 90' laver,, penetrate Into If

APPENDIX A laver,.
in Stress at which matrix cracks, extend compiectl\

across 0W plies
Relationship between Residual Stress and Curvature ur, Brideinem traction

The residual stresses in the plies can he dersved from the cur- akR Residual stress wvithin p1>
vature of a 01901 layer prepared as described in the text. Fronm a. Steads -state stress hir tunnel cracks

(j, Net st~ress in transverse plies ( applied plus residual)equilibrium, the residual force on these laminae must be zero. (T Critical applied stress for tunnel crackin, (if 911f plies
and since the layers. have equal thickness. t. then a, Matrix cracking parameter for WI plies

0 -- I> Matrix fracture energ%
URI" "ai'k- '''1 Transverse fracture energy of pl\

where aTR is residual stress and the subscripts 0 and 910 refer to 11 Thermal expansion miistit strain betwseen fibers, and
the 0' and 9W~ layers. respectively. The residual stress in each naiarilk
liver can also be related to the bending moment, per unit %% idth -. Interlace slidine trs
At' by Permanent strain

Itilisfii strain between liineitudinal and tran's.erse plies
AJ`R =TR (rA-2) Failure strain (it comnposite

Elastic mismiatch parameter (E, - E, i &IF E,
where i. Poisson', ratio

E/ h Pullout parameter
(l i-A-3t A,. A, 0' phx cracking paramecters.

with E beine, the Youne2s modulus of' one oit the lasers. I the
as, ociated second moment of inertia, and J.' thc radius of cur- References
%ature. Combining Eqs. t A-2 i and I A-M . the residual stress,,, (I I san, and t) H %lir~hastI. 'thv Mlc~hin.aikh.ssiis !ii

Ntpie Ciinip.-iics ' .;, ii, its hill . 37 li lo l '- l5I snias be deduced a,, As* ( urtin 'Thear, III 'sthank at tIlrotwi sIt ( er-UMii S StaiX WSlp
ic' Am (i-ispi .5, . 74 1i1i I5~~s, ss

F~~ I, H VR Kini anid N tlavani,. -( racik t niti saiin in t niidirei, i nsil rsitte Matrix
fA-4 I (,nr Jsue %,,I ( s-iam S-. . 74 1 "II N -tii2~ P t1sjt I

~~ ~A t'r.\, a nd1 P Suniih. Si .Jt Iin-, ihc Site%%s St rain] tictias u os r Ii nidirss

\%hee/, tiisve \ 1n.Lt ( CrAnik Mtaimr ,, (inrtxisiic j .,ssiiapl , S, ,lo- S in res ici,
where~~~~~ \%, isRsnbyH ikk J R Spann. 1) t :%1 is nd \% (--ihtcn/, 1 hs t lits ors ( craps,

121,nI =__ 3 2 - + 33 -
2K 1 A ~ itils~win, ,naimsii ill, H~sin tsnimrariurc \tcshanic.t ita seills .. ( crann, tPsN'r
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The tensile properties of three carbon matrix composites
reinforced with Sic INicalon) fibers (materials A. B, C) C
have been measured with and without notches. One of the
three materials (material B) had a relatively low strength
and exhibited notch brittleness. This material had both a Multiple ii 1:
high interface sliding stress and a low fiber bundle strength, Mode I '

caused by particulates in the matrix. These characteristicsF
have been shown to result in a change in failure mechanism F FF

that leads to the inferior properties exhibited by material B. 0 l F
The notch properties or the higher-toughness materials I

were shown to involve splitting, which alleviates the notch 65
stress concentration and diminishes the notch sensitivity. .~F

1. Introduction (
0)Mixed Mode Mode I

CN1ALunderstanding now exists regarding the mechan- a
Aical properties of brittle matrix composites reinforced with CF
continuous brittle fibers."F In particular, the relationships
between the properties of unidirectional material in longitudinal I flI
and transverse tension and the in situ properties of the fibers.
the matrix. and the fiber/matrix interfaces have been identi-
fied." Some relationships between the properties obtained on
unidirectional material and the corresponding properties of 2-D)
structures have also been developed.' However, there have
apparently been no quantitative attempts to assess the proper-
ties of carbon matrix composites within this framework. The Inverse Fiber Strength
intent of the present article is to examine and evaluate the ten-
sile and notch-tensile properties of several 2-D carbon matrix Fig. 1. Map indicating the various damage mode% found in briittle
composites,.arxcopsts

In brittle matrix composites, the ultimate tensile strength and mancoost.
the long-itudinal modulus along one of the fiber directions are
dominated by the in situ properties of the fibers. A useful nor- interface.,.'F Both 11, and -. must be sniall for the composite to
malization for the stress (7 is thus" cr f.S,. where~f is the fiber exhibit normalized strengths and failure strains approaching
volume traction in the loading direction and S, the in situ fiher unity. Consequent1N, i is possible to rank the tensile properties,
strength at a particular gauge length) i 1 A corresponding nor- through the it? situ c/iaracterisri-N of the fiher.s and the' fiber.
malization for the strain is"' FEh. where F, is the failure strain matrix interface.
for the fibers. With these normalizations. /iigh-perftirmance The notch properties are reflected in a notch sensitivits.
composites have ultimate strengths o(,lf.S,) and failure strains which can range from notch- insensitive behavior" (wherein th~e
tE/,h) (,lose to uniit.%. Such values occur when the interfaces are tensile strength can he expressed simply in terms of the net see-
~weak.""' The characteristic -wcakness" of fiberimatrix inter- tion stressl t o an extreme notch sens'itivitv characterized bN
face% can be ýpecified in terms of a debond fracture energy for fracture mechanic-, " TvpicallN., brittle matrix composites
the interface, F,, as well as the sliding stress along the debonded exhibit behavior between' these 'extremes. A range of damage

phenomena. illustrated in Fig. 1. govern the notch properties."'
These phenomena include mode I matrix cracking with fiber

M U7 Thou lrs%% ýoniribuiing editor pullout,"' delamination cracking from the notch." and multi-
pIe (mode 1) microcrack damage. ' ' The notch sensaii.itv is
intimately related to the operative damage phenomenon. In

MaucitNo 19614Y iiccjc~d September 17. 1991. approved Junc 17 some cases, models have been developed that relate the notch
M199-1~p strength to vanous properties of the matrix, fiber-s, and
Mcmhitcr. American Ceramic Socety interfaces.
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noninieractmg fiber bundle failure with multiple matrix cracking: (b)
failure by growth of a dominant mode I crack through a fiber bundle. Shape Parameter. m

(b)
Techniques that have been particularly useful in diagnosing Fig. 3. Statistical parameters asst•ciated with fracture mirror mea-

the properties of brittle matrix composites involve measure- surements: •a) noninteractmg fibers; (hi single matrix crack.
ments of fracture mirrors on failed fibers, as well as fiber pull-
out lengths.•, s., Fracture mirror measurements allow
determination of the in situ strengths of the fibers, S,. Fiber •i) Bundle Failure
pullout lengths, h. provide information about the interface slid- A number of important results for tiber bundle failure in brtt-
ing stress, -r. Both relate to the ultimate strength, cru. The pres- tie matrix composites7•*-" have been derived using weakest-link
ent study has been conducted on carbon matrix composites statistics. The results apply, subject to a global load-sharing
reinforced •'ith Nicahm SiCfibers, which have a well-cstab- IGLSI criterion which gives rise to um'orrelated tiber failure
lished fracture mirror response.• Furthermore, such composites sites (Fig. 21a)). This criterion assumes that the interlaces have
have been shown to exhibit an oxidation resistance much supe- sufficiently low debond energy and sliding stress that the failed
riot to that of carbon/carbon composites and thus have interest- fibers do not concentrate stress. It is also implied that the matria-
ing potential as high-temperature structural composites,-"' is subject to multiph, cracking, prior to composite lailure. In

such a case, the matrix influences composite fracture b• trans-
ll. Analytical Background ferring load from a failed fiber to all remaining intact fibers.

equally. Then, load recovery from a tiber failure site oc-t:urs
While a range of possible damage mechanisms can operate in along a fiber, through the sliding stress. "r. •J: As a result. •her.•

brittle matrix composites [Fig. ! ), previous research on carbon can also experience multiple cruck•. Since the load recovcry
matrix comp•site,,, has suggested thai the tensile fracture pro- length is related to "r, composite parameters such as the pullout
tess in either notched or unnotched materials usually occurs by length •nd the in situ fiber strength have a direct connection
a mode I mechanism (wherein the primary fracture plane is nor- with "r.
real to the loading axis).:• :' In general, there are two mode I Global load-sharing results are based on weakest-link static,-
failure reg=mes, depending upon the stress concentration expe- tics plus fracture mirror mfom•ation.' The fracture mirror mea-
nenced by intact fibers neighbonng a previously failed fiber. In
one limit, the interface anti, or the matrix are sufficiently surements determine the local stress. S, acting on the fiber,
"'weak" thai the matrix does not transmit such a stress concen- upon failure, at the location of the fracture fla•', The measure-
tratzon, whereupon each of the fibers is statistic'all\" indepen- ments of S are correlated through the cumulative function" ':
dent (Fig. 2•a)).;"•" Conver•ly. when a stress concentration G(S) = I - exp[-(S/S.)]'. (ll
develops, failure involves the progressive propagatum oJa
crack with simultaneous failure of the fibers' • (Fig. 2(b)). Both where m is a shape parameter and S a scale parameter Weak-
regimes are briefly outlined below, to provide a rationale for est-link analysis of this phenomenon•" has demonstrated rela-
conducting and interpreting the experiments, tionships between m., S.. and the properties of the fibers in silu
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S, can be obtained from Eq (4). (iv) If S,, is known from inde-
pendent fiber str~ene th data. Eq 0) mia' be used ito check on the

~ 03 manjuntudL- of S_.'. Calculate (he ultinmate strength rT, from
03Eq 6

U.w0ple Uautx Cracks ),m (2) Crack Extension

\Uirioux studies on :eramic mairis conipositei& hase indi-
0-.~~ cated that j trinxtt!on in failure mechanism occurs a, the ratio

S. incrca.ies V'hiN transition is not sseil understood but
0 undoutite-.iv in\ olse' snic des iation fronm ,iobal load sharine_

0. such that[ liicr tj.-lurs- uocurs in conjunictlon ss ith miatin crack
propac2anon. is ilustrated in Fig 2 hi In this local load-shar-

ti 0 1 ino iLLS rc) ini.mode I cracks propagate sub ect to a resiN-
cc tlance curse A simplified crack growth model is presented

Singie Matri raký:m that addresses this failure miode in 2-1) CMI*s When the fiber
pullout fenigth. h,. is relatisel,, large i~R > - I I. it has been

0, 5a 1 3 50 2 a 510 shown that the resistance is dominated lls friction ekerted oser
the entire putlout lenoth. such that h, correlate,. with the fracture

Shape Parameter, mn resistance in accordance w,%ith'

Fig. 4. Nondimensiona) hber pullout lengths. .IL. ft 7

within the composite. These relationships connect the fracture where K, is the fracture resistance of the matrix. L is the crack
mirror shape parameter m. with the shape parameter "t for the extension, and-/*, is the fiber fraction is itlun the' bundle. For a
actual fiber strength distribution. as well as the fracture mirror small surface crack in a tensile bod). the stress intensity factor
scale parameter S* with a characteristic fiber strength S, (Fig. K is given bN
3(a)).`2 The characteristic strength S, is the mean fiber strength
at a gauge length governed by the load transfer length- It is K I .98(T a. a+L (8)
defined as where a is the imposed stress and a,, is the initial crack length.

-S, 2 Crack extension occurs when K = K, and hence, from Eqs. 17)
7 Ri t, and (8 1. the stress and crack length are related by

where S, is the stress scale parameter for the fiber strength dis- ITyu~+L , ' 9
tribution and C,, is a normalizing length (usually taken to be 1I,8'\a,+ 9
in).' In order to relate S, to the strength of the fibers measured in T

a bundle (without matrix), 5S,, the difference in gauge lengths This result can be reexpressed ins terms of the fiber prop,~;iies
must be taken into account. The fiber bundle strength at gauge ascertained from fracture mirror measurements. For this pur-
length t is given by pose. when fracture occurs by growth of a single crack. the sta-

tistical results associated both with pullout and fracture mirrors
S, = S0(f,1ifme)'" 3 differ from those for multiple matrix cracking.` Modified

Consequently, S, and S, are related by results for single cracks are summarized on Figs. 3(b) and 4. lIn
particular, the pullout length ý relates to the new characteristic

Sb, = S,- "~(R/.rfme)i (4) fiber strength S, through`2

where e is the base of natural logarithms. Hence, with S, and mih
ascertained from fracture mirror data. S, can be determined j- = 'im)/4 (10)
from Eq. (4). provided that -r is known.RS,

The sliding stress -r is related to the pullout length h by": as plotted in Fig. 4. Combining Eqs. (9) and (10). the predicted

hT/RS Mmi)14 () crack growth stress becomes

with A(m) being a nondimensional function determined from _ 1/'.
the statistics ol fiber failure, plotted on Fig. 4. Consequently. -r 1 - 9 \at 4 L[ K, tn L(l
can be obtained from independent measurement oflT. t.8 ~s

The final result of importance concerns the ultimate strength It is apparent from Eq. (IllI that the crack extension stress
of the composite. cr,. given by" increases continuously as the crack propagates through the bun-

r , i r l ~dle. Consequently.. aT reaches a maximum as the crack exits the
-s + 1] (6) bundle, into the'adjoining matrix laver (where the resistance

"'jim + 2)J m 4 2j drops). In a woven architecture, the bu'ndle dimensions are such

wheref, is the fiber fraction along the loading direction. It is of
significance to appreciate that o-, expressed in terms of S_. ____

through Eq. (6). has an imnpltcit dependence in -r, as indicated W~hitec ils S and m aire needed so predici it. aluc-. of . 5,. and S5.. pirovtdc

by Eq. (2). impo~rtantinsigh! aisoui the compo%Iic

In summary, the above formulae (Eqs. (I H6)) may be used
as follows, (il Determine S. and m. (Eq. 0() based on fracture
mirror measurements, and then obtain S, and mn from Fig. 3(a). TablelI. Carbon Matrix Materials Used In This Study
(itIi Determine hi and evaluate -r from Eq. (5). with rn and S, now ILcnslV is -!cF voiumec poroI,'I Flher
known. (iii) With 5,, -r. and mn known, the fiber bundle strength Mateial44 O igmi rddionl i'4- coatiing Maint

A 1.98 0).44 10 None C
'Tissclig uatiy mpic% ncud% hedwibirn f thr ~di.whch B 2.04 0.45 9 None C + particulate

arc no yeatdtrined uaii npiaihetd'itcdsitel )hhe ~ii hc C 2.00 t04(0 12 C C -4- particulate
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400 T able 11. Comparison of Measured and Predicted
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II. Materials

50 Three different carbon matrx composites reinforced "ilh

Nicalon fibers (average radius. R = 7 l.-m) were supplied b%

0 0.1 02 03 04 0.5 06 07 0.8 09 1.0 B, P Chemicals (HITCOI Inc. iBPCHI) Thes are from
BPCHI's Ceracarb's composites line and are referred to here as

Strain (%) materials A, B. and C (Table It." All of the composites were
fabricated by conventional lamination methods, folloved b%

Fig. 5. Tensile stress-strain curves obtained for each material. pyrolysis and carbon chemical vapor inliltration (CVI). Mote-

rial A is a reference material, wherein no elements other than
carbon are present in the matrix. Material B contains particu-
lates that were introduced into the matrix during the impregna-

that the stress maximum arises when L ý a., (Fig. 2(b)). where- tion of the fabric. Material C also contains particulates. but the
upon Eq. (I I ) predicts a peak crack extension stress or. given by fibers were precoated with a thin layer of pyrolytic carbon prior

0,36K,, to their impregnation. All materials were made from a balanced
r+= • + 0.28fhSXA'(m) (12) 2-D Nicalon cloth with an 8 harness satin weave. The layers of

fabric were laid up in a 0*!90' fashion to yield a nominal fiber

When residual stresses are present because of thermal expan- tractionjf 0.43 and a fiber fraction aligned with each of the
sion mismatch between fiber and matrix, aT. is modified and is two principal axes offi 0.22. The fiber fraction within each
typically lower than the magnitude predicted by Eq. (12). bundle isf, 0.67.

200

150 A

100

E

z

50
Material C

Material B

0.20 0.40 0.60 0,80 1.00

Nominal Strain (%)

Fig. 6. Nominal stress-strain curves obtained using double-notch specimen%
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particulate~s (material C). the strength essentialis. re.erts ito that
tor the reterence material. .A similaýr trend is e,.ideni in the tailI-
ure strain.

I it The notch tensile properties obtained along one fiber direc-
tion are summarized in Fig. 6. wherein the nominal sires, is
plotted as a function of the nominal strain. All materials exhibit

.•• appreciable nonlinearitN prior to failure. The magnitude of the
notch strength. and the extent of the nonlinear defi)rmation
prior to failure. increase in the same order as the tensile strength
and tensile failure strain: notably, the properties increase in the
order B -, A ý C.

The ratio of the notch strength. cr.,. to the tensile strength. (T.

is essentialiv the same for all three materials. Converseh. the
extent of nonlinear deformation in the notched specimens prior
to failure is strongly material-dependent, again increasing in
the order B - A C.

Fig. 7. Comparison of fracture surfaces revealing differences (3) Observations
between (a) matenal C and (b) material B. All of the notched specimens fractured in nominal mode I

wherein the principal fracture plane was normal to the tensile
axis, such that the fracture surfaces were amenable to explicit
measurements of the fiber pullout distributions and the fracture
mirror radii. One immediate difference between material B and
either of the other materials concerns the failure location, In

IV. Experimental material B, fracture is essentially coplanar. with the longitudi-
nal bundles failing on the same plane as both the transverse

(1) Procedures bundles and the matrix (Fig. 7 1a)), However, in materials A or
Tensile tests have been conducted using friction grips to pro- C. the longitudinal bundles fail on planes offset rnom the plane

vide alignment. Displacements are measured by means of an at which the transverse bundles and the matrix fracture (Ftc.
extensometer in contact with the gauge section. The effects of 7(b)). Pullout measurements are conducted in all cases wilth ret-
notches on the tensile properties have been investigated by erence to the matrix failure plane within the hundle.s, using the
using a double-notch tensile configuration. with the notches SEM technique described elsewhere.' The cumulative distri-
introduced using a profiled diamond wheel. In the notch tests. bution of pullout lengths, h. obtained for the three materials,
damage development was monitored by infiltrating the mate- (Fig. 8) reveals that h is appreciably smaller for material B than
ral. while under load. with a Znl. solution, and then using an (or either of the other two materials.
X-ray method to image damaged regions." Fracture surfaces Fracture mirror measurements (see Fig. l10a)) lead to the
and polished cross sections were studied using scanning elec- strength distributions summarized on Fig. 9. It is apparent that
tron microscopy ISEM). this measure of the in situ strength indicates no significant dif-

(2) Measurements ference between the three materials. However. because of the
implicit influence of the slip distance on S, (Eq. (2)1. these

Typical tensile stress!strain curves obtained on each of the result do not necessruly imphy that the fiber bundle strength i.v
three materials tested in the warp direction are summarized in the snre fior each composite.
Fig. 5. Ultimate strength results obtained on 10 specimens of Direct observations of the fibers after testing have provided
each material are summarized in Table 11. It is apparent from a additional information. The fibers in reference material A
companson of the properties of these materials that the use of exhibit smooth surfaces (Fig. IO(a)), characteristic of the origi-
hard particulates in the matrix in material B reduces the tensile nal fiber.' whereas material B exhibits particulates attached to
strength compared with the reference material A. However, the fiber surfaces (Fig. IONb)). In composite C. the carbon fiber
when a carbon fiber coating is used before incorporation of the coating is evident (Fig. 10(c)): In some areas, the coating has
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ABSTRACT

The tensile properties of various carbon matrix composites, reinforced with C and

SiC fibers, have been evaluated. The objective is to assess mechanics procedures for

characterizing the influence of holes and notches. Interpretation has been attempted

using large-scale bridging mechanics, with linear elastic fracture mechanics as one limit

and notch insensitivity as the other. Important differences between the materials,

associated primarily with the fiber/matrix interfaces and the in-plane shear strength,

have been identified and attempts made to rationalize these differences.
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1. INTRODUCTION

One of the important macroscopic mechanical properties of 2-D brittle matrix

composites is the effect of notches and holes on the tensile fracture strength. This

information is required both for design and for the development of improved materials.

The approach used to represent this behavior is governed by the mechanisms of damage

that occur near the notch and their influence on the stress field around the notch. For

design, a simple representation of the results is needed. Various representations have

been used for structural materials. One is based on elastic stress concentration factors. 1

Another uses linear elastic fracture mechanics (LEFM). 2 Intermediate behaviors are

frequently found in brittle matrix composites.3 Two approaches for characterizing notch

size effects in this intermediate regime have recently been proposed using either the

mechanics of large-scale bridging (LSBM) or continuum damage mechanics (CDM).4 -7

The LSBM approach is relevant whenever fracture from the notch involves a single

matrix crack with bridging tractions acting across the crack, provided by fiber

reinforcements. 8,9 The CDM approach is more applicable whenever multiple matrix

cracks emanate from the notch. The essential non-dimensional parameters that

interpolate between notch-sensitive and notch-insensitive behavior are described in the

Appendix. One objective of the present study is to examine various mechanics

approaches for several carbon matrix composites, all having the same fiber architecture.

Brittle-matrix composites exhibit at least three dominant behavioral classes (I, II, I11),

governed by the operation of different damage mechanisms 10-12 (Fig. 1). Some of the

differences in notch properties between these classes are described in the Appendix. The

mechanics used to predict trends in notch properties for a particular composite require

that the behavioral class be identified. Such mechanism identification represents

another objective of this study.
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2. EXPERIMENTAL PROCEDURES

2.1 Materials

Four carbon matrix composites were supplied by BP Chemicals (HITCO), Inc. Two

were carbon/carbon (C/C) materials, designated here as materials X and Y. The others

were SiC/C CeracarbTM composites, designated materials B and C.3 All of the

composites had a fiber architecture comprising an eight harness satin weave. The layers

of fabric were laid up in a 0/90 fashion to yield a nominal fiber volume fraction,

f - 0.43, and a fiber fraction aligned with each of the two principal axes, f, - 0.22. All

the materials were fabricated by conventional lamination, followed by pyrolysis and

chemical vapor infiltration. The C/C materials have Thornel T300T"M fibers as

reinforcements. Material X is a reference material, wherein no elements other than

carbon are present in the matrix. Material Y contains particulates introduced into the

matrix during impregnation of the fabric. The CeracarbTM materials contain NicalonTM

fibers in a matrix similar to that of C/C material Y. In material C, the fibers are coated

with a thin layer of pyrolitic carbon. Material B has no fiber coating.

2.2 Test Procedures

Rectangular specimen blanks 130 mm long were prepared by diamond machining.

In some specimens, double-edge notches were introduced using a 500 gm thick profiled

diamond wheel with a 250 p.m tip radius. In others, either a center notch or hole was

produced. For the C/C composite, three effects of notch geometry were investigated.

One series of tests was conducted on specimens of width, 2b = 15 mm, but with three

edge notch sizes, ao = 1.875 mm, 3.75 mm and 5.625 mm. These tests gave a range in

ao/b = 0.25, 0.5 and 0.75. The purpose of these tests was to investigate notch sensitivity

at a single specimen scale. A second series of edge-notch tests consisted of specimens

with fixed ratio ao/b = 0.5, but with variable specimen widths, 2b = 5, 10, 15 or
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24 mm, with the aim of investigating the effect of absolute scale. These results were then

compared with the behavior found for center notches. For the SiC/C material, tests

were conducted with edge notches, center notches and center holes, all with

ao/b = 0.32.

Baseline strength data were obtained from tensile coupons slightly waisted over

their gauge lengths. Waisting was achieved by using a 150 mm diameter grinding wheel

to give a reduction in width conforming to a circular arc, with a maximum reduction of

1 mm from each side. For the C/C materials, two width scales were used in the gauge

length: 8 and 2 mm. For the SiC/C composites, only 8 mm widths were tested. Six

specimens were tested for each condition. The specimens were loaded in tension in a

servohydraulic load frame. Loads were introduced using aligned hydraulic grips. Tests

were conducted in displacement control at an actuator speed of 2 ptm/s. Displacements

were measured using a centrally mounted 10 mm clip gauge. For measuring the local

strains in the longitudinal and in the transverse directions, strain gauges consisting of

single foils and with a gauge length of 0.75 mm, were used*. The strain gauge signals

were monitored using Micro Measurement amplifiers." The analog signals from the

strain gauge amplifier were digitized using an A/D board,"* and all data from the tests

were sampled using a PC data acquisition program, which also controlled the test

machine. The tests were conducted either as monotonic loading to fracture or as

loading-unloading tests to measure the influence of accumulated damage on the

stiffness of the materials.

Damage development was monitored by infiltrating the material with a ZnI2

solution, while under load, and then using an X-ray method to image damaged regions.

Fracture surfaces were studied using scanning electron microscopy (SEM). Preliminary

"Micro Measurement type EA-06-O31DE-120
.Mieasurement Group, model 2120A, strain gauge conditioners with a model 2110A power supply
"Instron, model 8500-133
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information about the notch tip stress distributions was obtained on the C/C

composites by Stress Pattern Analysis using Thermal Emission (SPATE):13,1 4 a

procedure by which surface temperature distributions were measured while the

specimen was cyclically loaded between 0 and 50 MPa. These temperatures are, in turn,

related to the sum of the in-plane principal stresses. A comparison is made between the

material prior to testing and after preloading to 120 MPa.

3. MEASUREMENTS AND OBSERVATIONS

3.1 Tension Tests

The tensile tests gave reasonably consistent results (Fig. 2, Table I). All materials are

slightly non-linear . The C/C material X and the SiC/C material C exhibited similar

strengths. There was no significant influence of specimen width, except for the greater

variability for the narrower specimens, probably reflecting the inconsistent number of

0' tows in the cross section. The C/C material Y was weaker than X, while the SiC/C

material B had the lowest strength.t

The non-linearities are reflected in the measurements of unloading modulus, E, and

Poisson's ratio, v (Fig. 3). It is apparent that the SiC/C materials develop significant

non-linearity, commencing at - 100 MPa, manifest in a reducedE and v. These changes

ar7 attributed to combined efict-a ef matri= Cdacks a:-i fiber failure. The reduction in t

and, particularly, v is more pronounced for material C, suggesting a greater incidence of

matrix cracks prior to failure. Conversely, E for the C/C materials changes by < 3%

prior to composite failure. For these materials, V is negative and ranges between - 0.1

and 0, but does not appear to vary in a systematic manner as loads are applied.

t Two C/C specimens were cyclically loaded up to one million cycles. The compliance did not change
significantly and the final damage was not visibly larger than that of specimens loaded to the same
stress level under monotonic loading.
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3.2 Notched Tension Tests

Load/deflection curves obtained on edge-notched specimens indicate various levels

of non-linearity prior to unstable fracture, as illustrated by results for the C/C

composites (Fig. 4). The non-linearities also coincide with an increase in compliance.

Furthermore, loading/unloading cycles conducted on specimens previously loaded

close to their failure stress revealed significant hysteresis. The specimens with

ao/b = 0.75 retained a load bearing capability after achieving their maximum load.

Specimens with smaller notches all failed catastrophically. The C/C specimens with

fixed ao/b (= 0.5), but of varying widths, showed a pronounced size effect (Fig. 5a).

Material X consistently exhibited a higher notch strength than material Y. There was

also a strong effect on strength of relative notch depth, ao/b, at fixed width (Fig. 5b,

Table II).

The SiC/C materials exhibited a similar set of notch characteristics, with material C

superior to material B. The results are summarized in Table II, which compares the

notch strength, SN, with the net section stress, (TN. Evidently, the relative degradation in

tensile strength caused by notches is similar in both materials. Moreover, notches result

in a greater degradation than holes. Strain gauge measurements made around holes and

notches, as the materials are loaded to failure, gave the strain concentration factors at

composite failure, summarized in Table II. In each case, the strain concentrations are

either comparable to, or somewhat lower than the values expected for an isotropic

elastic system. 1

3.3 Damage Observations

The X-ray die penetrant measurements indicate that, in three of the materials (C/C,

X, Y, and SiC/C, C ), damage occurs and concentrates within a narrow zone normal to

the notch (Fig. 6). Related studies of sectioned specimens 15 have revealed that the
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damage consists of a network of matrix microcracks, with the majority of the fibers

intact, similar to the shear damage found in other brittle systems. 16 The lateral width of

the zone, ., increases as the stress increases. Furthermore, when normalized with the

notch depth, ao, the damage extent for each notch geometry appears to be uniquely

related to the applied stress for each class of material (Fig. 7). The zone size is consistently

larger for edge notched than center notch specimens. The two C/C materials exhibited

similar damage propagation behaviors. The SiC/C material C exhibited relatively less

damage. The SiC/C material B, on the other hand, had no discernible damage (Fig. 6b).

Tests conducted using SPATE on one of the C/C composites had the features

illustrated in Fig. 8. The principal comparison is between the temperature contours in

the pristine state (Fig. 8a) and those evident after introducing damage by preloading

(Fig. 8b). The preload used coincided with a damage zone size, k /ao = 1. A qualitative

comparison of Figs. 8a/b indicates that a significant stress redistribution has been

caused by damage. The uncalibrated temperature scales that accompany the SPATE

images provide a relative measure of the temperature range in the specimen, and are

scaled to range between the lowest, far field temperature, and the highest notch tip

temperature.

Observations of fracture specimens conducted in the scanning electron microscope

revealed differences between the C/C and SiC/C materials. In the former, the 00 fiber

bundles closest to the notch typically failed at some distance from the notch plane

(Fig. 9), leading to bundles pulled out of the composite. In the latter, there are no obvious

preferred bundle pull-outs near the notch root (Fig. 11). However, some generalized

bundle pull-out is evident in material C. Fiber pull-out was evident in all cases

(Table III) with the pull-out lengths being smallest in SiC/C composite B (Fig. 10),

attributed3 to a large value of the interface sliding stress, 1 (Table IMI).

In all composite systems, cracks are evident in the 900 bundles at the notch root

(Fig. 11). Some have a large opening displacement, consistent with their formation
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during processing. Others appear to be stress induced and are indicative of the failure

sequence, elaborated below.

4. ANALYSIS

4.1 Overall Assessment

The good notch properties of the present composites, relative to those of the

unreinforced matrices, are believed to be attributable to damage, consisting of matrix

cracks coupled with fiber bridging effects along the plane of final failure. The damage

redistributes stresses and reduces the tensile stress at the notch tip. These phenomena

are somewhat analogous to the role of the plastic zone in metals.2 ,17 In order to

rationalize the experimental results, it is necessary to have appreciation that several

behavioral classes are possible (Appendix). Three of the materials (C/C, X, Y, and

SiC/C, C) exhibit a distinct shear damage zone and will be treated as class MI systems.

One material (SiC/C, B ) fails in mode I and is regarded as class I.3

In class MI materials, stress redistribution occurs as a result of shear band formation

at the notch. When the band size I is relatively small, LEFM should be applicable.

Deviations from LEFM are expected when I is large. Consequently, the important

issues are:12,18 (i) the ratio of the damage zone size to the notch size, (ii) the stress and

strain distributions ahead of the crack, (iii) the failure criterion, which dictates the

magnitude of the local stress at the fracture criticality. The interpretation of the notch

properties involves separate considerations of each of these issues.

For class I materials, stress redistribution is associated with the tractions across the

crack, governed by fibers that bridge and pull-out as the crack extends. 4 -7 The

magnitude and geometric scale of these tractions are of primary relevance, as governed

by the sliding stress, t, the characteristic fiber strength, Sc, and the pull-out length, h.

When the bridging zone is small compared with the notch size, LEFM should be
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applicable. Conversely, when the bridging zone is large, the notch properties are

expected to be represented by large-scale bridging mechanics (LSBM), as described in

the Appendix.

The presence of cracks near the notch tip in the 900 bundles (Fig. 11) suggests that

first damage consists of matrix cracks in these bundles. Similar behavior has been found

in other CMCs 19 and analyzed using a tunnel cracking model.20 Subsequent damage

appears to be dependent on the material, via the behavioral class. Consequently, each

class is considered separately.

4.2 Class III Systems

In the C/C composites, as well as in SiC/C material C, transverse damage is

prevalent, indicative of class TTM behavior. The form of the damage growth curve (Fig. 7)

suggests that the damage can be regarded as a band subject to shear strength, T. The

growth of a shear band has the following characteristics:2 1,22 when the band length, 12,

is small compared with the notch depth, a0 (I /ao•Z 0.3), its magnitude is given by the

small-scale yielding (SSY) result,

I/a =- 0.052n (;/T)2  (2a)

At larger zone sizes, 2 /aO 5 2, the zone length conforms to a shear lag (SL) solution,

I/a. - c/T (2b)

At intermediate I /ao, numerical solutions provide the appropriate relationship. 21,22

The band growth curves predicted by these solutions are found to superpose onto

the experimental measurements (Fig. 7), upon choosing explicit magnitudes for T,

somewhat dependent on notch geometry. For double edge notch specimens,
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T = 50 MPa for the C/C composites and T = 60 MPa for SiC/C composite C.

Somewhat larger values apply for the center notch: T = 60 and 70 MPa, respectively.

These values are consistent with independent measurements of the in-plane shear

strength of these materials. 2 3 This consistency with a shear band model is the basis for

conducting further analysis. The smaller values of T found for edge notches than center

notches may reflect the existence of appreciable normal tension along the shear zone, in

the edge configuration. 20 Superposed tension is known to facilitate the propagation of a

shear damage zone in brittle solids.16

In the presence of a shear band at a notch in a tensile specimen, the stresses ahead of

the notch are redistributed. Finite element calculations (Fig. 12a) indicate that the (yy

stresses immediately ahead of the notch are dramatically reduced by shear damage,

with a corresponding relative increase further from the notch. The rcduced stress occurs

in the range

X/ao ;ý 0. 1 (3)

where x is the distance from the notch tip. The associated hydrostatic stress contours

(Fig. 23b) are also qualitatively consistent with the SPATE temperature contours (Fig. 8).

The relatively low Oyy stresses close to the notch induced by the shear band is

considered to be the origin of the notch resistance found in class Mll compG:ites.

Given the phenomenological similarity of the shear band behavior to the influence of

a plastic zone in metals, LEFM is used to obtain a critical mode I stress intensity factor,

KIC, from the results. The magnitude of KIC is obtained for one notch configuration and

then, the notch strengths measured for all other geometries are checked for consistency

using standard stress intensity formulae. For double edge notched (DEN) specimens, 24
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Kc = S T [1.98 + 0.36 la,/b) - 2.12(ao/b) 2 + 3.42(a./b)3  (4a)

whereas, for center notched (CN) specimens 24

Kjc= :S (1.77 + 0.22-Nao/b) - 0.51(ao/b)-+ 2.7(ao/b)'] (4b)

with SN being the measured notch strength.

The results (Fig. 5) obtained for edge notched C/C specimens indicate good

correspondence, with KIC = 16 MPa'1-m for material X and 15 MPa-m-" for material Y.

However, the corresponding values inferred from the center notch specimens are

consistently larger (Table IV). Consequently, there are limitations to the universality of

LEFM, wEhch need to be further explored. The difference in behavior found between

edge and center i.otches may reflect differences in the shear strength, T (Fig. 7), and

associated stress redistribution effects.

It would be anticipated that LEFM is less likely to apply for small notches and

manufacturing flaws because of the relatively large-scale influence of the shear bvaid on

the notch tip stress field. Nevertheless, it is of interest to interpret the unnotched tensile

strength by invoking LEFM. This is accomplished by extrapolating the LEFM curve

(Fig. 5a) to the measured tensile strength and inferring a flaw size. This procedure infers

flaws having size, ac - 500 gm. This size is similar to the dimensions of the 90*

bundles. Since cracks form readily in these bundles (Fig. 11), LEFM appears to describe

the unnotched properties, surprisingly well. Again, however, additional testing is

needed to fully app-eciate the 1;"its on the use of LEFM.

The corresponding results for SiC/C material C are not sufficient to address the

corresponding applicability of either LEFM or LSBM. However, estimates of KIC, with

comparison between edge a. center notched specimens (Table IV), indicate
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comparable toughness levels and a discrepancy between DEN and CN results similar to

that for the C/C materials.

4.3 Class I Systems

It is believed from previous studies3 that the SiC/C material B is class I, whereupon

LSBM would be expected to have greater applicability than LEFM. Indeed, the use of

LEFM, based on KIC estimates (Table IV), indicates a major discrepancy between DEN

and CN results. Consequently, LSBM analysis is attempted. Before proceeding, the

prerequisite that the material be class I is addressed by comparison with the mechanism

map (Appendix). The experimental stress/strain relationships (Fig. 3) combined with

the constituent properties (Table 11) for a notch size ao = 1.5 mm, establish that the (S,

Z) coordinates on this map (Fig. Al) are (0.04, 0.3). These coordinates are consistent

with class I being the operative behavior. As further background, it is noted that the

pull-out stress (Eqn. A4) obtained using the parameters from Table ITI (ap = 270 MPa)

is a reasonably close lower bound for the measured UTS (S = 225 MPa), whereas the

strength predicted by assuming global load sharing (Eqn. A4, Su = 380 MPa) is

considerably larger than the UTS.

A procedure for using LSBM requires that the relative strengths measured on the

specimens with center notches and center holes (Table II) be superposed onto the design

diagram (Fig. A2b). When this is done (Fig. 13), all results are found to be consistent

with a pull-out flaw index having magnitude, Ap = 0.2-0.4. Independent evaluation of

this index (using Eqn. A6), gives, A - 0.1 for 1.5 mm radius holes and notches. The

correspondence is reasonable and encouraging, but the results are insufficient to

establish that LSBM is the preferred mechanics approach for this material.
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5. CONCLUSIONS

An effort has been made to understand the stress redistribution mechanisms that

operate in various C matrix composites subject to strain concentrations, such as holes

and notches. Based on these mechanisms, plus associated implications for the scale of

stress redistribution, a preliminary assessment has been made of various mechanics

methodologies. It is found for class III materials, in which shear bands constitute a

major mode of stress redistribution, LEFM applies reasonably well, despite quite large-

scale non-linear zones around the notch. In a class I material (SiC/C material B) that

does not exhibit shear banding and also has relatively small fiber pull-out lengths, the

LSBM approach appears to provide consistent predictions of the influence of center

notches and holes. However, considerable additional data would be required to provide

a rigorous assessment of LSBM compared with LEFM.
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APPENDIX

Mechanics Methodology for CMCs

For each of the three classes of behavior illustrated in Fig. 1, a different mechanics

appears to be required, which combines aspects of LEFM, CDM and LSBM. In this

appendix, some of the key results applicable to LSBM are presented. The first important

LSBM result is the mechanism map that distinguishes class I and class II behaviors1 1

(Fig. Al). LSBM is only strictly applicable when class I behavior arises.4,5 The indices on this

diagram are as follows: (i) An interface index for fiber bridging, S (which is the inverse of

the flaw index),11

S-1 _= A, = [fj/(1-.f2 )2] [EE,/Em] 2 [ao'r/RSF(m)] (Al)

where E is Young's modulus, T the sliding stress, R the fiber radius, Sc the characteristic

strength,25 ft the fiber volume fraction and

F(m) = [2/(m + 2)]')[(m + l)/(m+ 2)] (A2)

(ii) A non-linearity index,11

E = amc/fcScF(m) (A3)

where Omc is the matrix cracking stress, which approximately coincides with the onset

of non-linearity in the unnotched stress/strain curve.

Whenever the unnotched tensile properties of the composite are consistent with

global load sharing (GLS) predictions, the UTS is25
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SU= fS, F(m) (A4)

In some cases, the tensile properties in the unnotched state are controlled by the

pull-out stress,26

Or = 2fi'h/R (A5)

where h is the pull-out length. For materials having the latter characteristic, LSBM

establishes a pull-out flaw index4

A (a./h)(ar/E) (A6)

2f,(aor/RE)

Subject to the pull-out index, the tensile properties are straightforward and are

predicted to vary in accordance with design diagrams (Figs. A2a, b). When GLS governs

the unnotched properties, the appropriate flaw index is A, b (Eqn. Al). The

corresponding notch tensile characteristics also depend on Op /Su (Fig. A2c). However,

these results are only strictly applicable when class I behavior occurs. Materials

compatible with GLS predictions often exhibit multiple matrix cracking, which introduces

other stress redistribution mechanisms.
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TABLE I

Summary of Measurements Obtained From Unnotched Tension Tests

Specimen Ultimate

Material Width (mm) Strength (MPa)

2 345 25

x
8 341±7

c/c
2 292 ±27

Y
8 289 10

B 8 225±30

SiC/C
C 8 345 ± 30
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TABLE III

Summary of Constituent Parameters for SiC/C Composites 3

MATERIAL

B C

A 0.22 0.22

"r (MPa)* 90 10

Em (GPa) 30 20

E/ (GPa) 200 200

E (GPa) 70 59

Sc (GPa) 2.5 2.3

R (pm) 7 7

Sh in) 50 300

T is evaluated from h by considering that multiple
matrix cracking occurs in both materials.
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TABLE IV

Summary of LEFM Based Analysis of Notch Properties

MtATERIAL NOTCH TYPE a0ob Kic (MPaVm)

DEN* 0.30 8
B

CNt 0.32 12

SiC/C
DEN 0.40 15

C
CN 0.32 18

DEN 0.50 18
x

CN 0.32 24

C/C
DEN 0.50 15

Y
CN 0.32 17

DEN - Double Edge Notched

SCN - Center Notched
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FIGURE CAPTIONS

Fig. 1. A schematic of the three behavioral classes found in CMCs.

Fig. 2. Tensile stress/strain curves obtained on unnotched specimens.

Fig. 3. Changes in unloading modulus E and Poisson's ratio, V, following loading.

Fig. 4. Stress/displacement curves obtained for notched C/C materials indicating

varying degrees of non-linearity prior to failure.

Fig. 5. a) The influence of notch depth on the failure strength of C/C composites with

fixed ao/b = 0.5. b) The effect of a/b at fixed specimen width. Also shown are

the curves associated with LEFM characterization, extrapolated to the

unnotched tensile strength.

Fig. 6. The damage zone at failure in each of the materials, visualized using an X-ray

die penetrant method. a) C/C material X, b) SiC/C material B, c) SiC/C

material C. The damage zone for the C/C material Y is similar to that of the

C/C rnaterial X.

Fig. 7. The normalized shear band length as a function of stress obtained for C/C

materials X and Y, and SiC/C material C : a) edge notched specimens,

b) center notched specimens. Also shown are curves calculated for values of

shear strength, T, consistent with the measurements.

Fig. 8. Temperature amplitude distribution ahead of a notch in C/C material X

measured using SPATE: a) as-notched, b) after preloading to 120 MPa.

Fig. 9. Scanning electron microscope views of a failure plane in a notched C/C

composite: a) global view of the fracture plane, b) and c) are matching fracture

surfaces. Note the bundle pull-outs near the notch root.

Fig. 10. Failure planes in SiC/C materials: a) material B, b) material C.

Fig. 11. Cracks in 900 bundles formed at the notch root upon testing to failure,

indicated by the arrows.

Fig. 12. Finite element calculations of the stress ahead of a notch a) Oyy stress on notch

plane as a function of slip zone length, I /ao, b) stress contours, oII + o22,

KJS imM 23



normalized by the net section stress, GN (for a4/b = 0.5), for comparison with
the SPATE contours (Fig. 8b).

Fig. 13. A superposition of the results from center notched specimens and specimens
with a center hole on the LSBM design diagram.

Fig. Al. A mechanism map for class I and class II brittle matrix composites.

Fig. A2. Notch sensitivity diagrams for class I composites: a) Pull-out dominated

failure ao/b -* 0, b) Effects of plate width, c) Combined bridging and pull-out,

ao/b -- 0.
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THE MECHANIC'S OF FAILURE Of SILICON (A RBII)L
FIBER-REiNFORCED GLASS-MATRIX COMPOSIT1ES

S. JANSSON and t. A. LF~klf.l

Ahktraci . lefl~dc anid bending, test,' h~oc 1,e n performed or, . hw h-strcmnhi -trro?: t iirC.

reiiflorMXd gla,-ni*iri'N iLA.S composte Thec eperimcnhia re~ulib tnir at thaii iheý 'ircmi o!~l' Oic
COITnIV '1i le C"ipo nent iý sIro nge d iependent kin thi7 jxoelrnctr inid I jcmi I A zrool: 0e lju, 1,oýe~p

ilhCI ýiiS,. . unifo'rim interpretation (it thQ cspcrimcflt, Ahm itie a.iouni is t~der w ih: Ii'ý
I hc mairi\. the sidii~iica! nature ol the proper 'es of the fihrs. and tihe dimcnmioll ,I thc tdser u'. ouw
iefLinh

Resume---On cffectuc des essaii en. traciion et en flexion sur des COMPVNiteý hajule re'INijnhce firre.c &ýurw
matirwe dte %erre renforcee par die' fibres cc carnurue dc siliciari Les rcsuizji. csperiflerictu\ Itiwiqucr
que ]a resistance inecaniqut: du composite depend fortentent dc fa rgeometric ci dic hi car t r. nnode-C
de rupture es1t d ereoppe qui permet une Interpretation unique des esperience' lorsque oir 1ICm~ "InIplep
de IL re~istancc mecanique de la matrice. de la nature: statistique des propricie. des ithrc, et de hi ionisieuf
d~arraehage des fibres,

Zusammerifassung-Zug- und Bieitesersuche we'rden an hochfesien VerbundAerkstoflcn mit Ci lism~itri\
und eirier \ erstarkung mit Fasern aus Siliziumnkarbid durchizefuihri Die Ergebniswe 1ctgc;_ Jiýf die
Festigkcit der verstarkenden Komponentc stark %on der Geometric und der Belistung abhangi Fin
Bruchniodell wkird erit-w~ikelt. mit deni die Ex~rrimcrtie eintheurlch erklari %verden konner.. Aenn die
Festigkeit der Matrix, die statistisetie Natur der Fasereigerischaften und die Gro&3 der Fascr-Aulszugslange
richiig berucksichtigt %erden.

1. INTRODUCTION before a reliable mechanics iheors is cstablishea

Silicon carbon fiber reinforced glass-ceramic matrix which car, he widc! ' applied. An earls effort to
composites have a high strength weight ratio and develop a theory of mechanics is the w~ork of Wetbull
offer the prospect of a material with good high 15, 61 whose procedures are widely used to define the
temperature properties [1, 2]. Since there is little statistical strength of fibers. Weibull also developed
difference in the coefficient of thermal expansion the weakest link concept and this method is also
between fibers and matrix the stresses induced by widely practiced when establishing the strength of
thermal loading are small. It has been demonstrated components [7). Considerable attention has also been
for example that the tensile residual stresses after devoted to predicting tensile strength from the prop-
processing are low f3]. The properties of the fibers erties of the composite constituents including the
with the commercial name Nicalon are unimpaired studies of Thouless and Evans 181, Aveston et al. [9].
up to temperatures of 1000 [1] although it is known Schwietert and Steiff (10]. and Zseben and Rosen
that the mechanisms of fracture are substantially (11]1. In this study a variety of component geometries
different at elevated and room temperature 14). The are tested under different loading conditions and an
mechanism of failure of these materials have been attempt is made to establish a model %%hich can be
extensivelx studied but by contrast less attention has used to determine the strength of engineering com-
been devoted to establishing the mechanics which ponents. and to define the underlying failure
dictates the strength and potential failure of the mechanisms-
engineering components now% being made from such
materials. 2. TH-E TEST PROGRAMI

Because of the relative ease of the bending test
most material data has been obtained from this The material used in this stud consists of silicon
source. The strength however is known to he geome- fibers (commercial name Nicalon) in a uniaxial las-up
irn dependent with substantial diffierences existing. whose elastic modulus is 200 GPa embedded in a
for example. between the results of tensile and bend- matrix of lithium aluminosilicate (LAS) whose modu-
ing specimens (3]. Such differences must be reconciled lus is 95 GPa The average tensile strength of the

2967
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fiber, arc reduced durmine the processine fronshti 200 lo 1 i 113 l n il J1C l h ssnl iktth oiianeulir co
I 'ýt0 M PaKisbocd on .,rc Ierence, lenm:th of' 2'ý niii [I 1 se.A!'n I (,I threc-p'uol herliine ,, reciangutar
Thec \'onen in 1,.-u 0iais.~ is[ . i 3 -11ni I c"io ~ ~ c
.tl O IL: d i . lj'craec itl , 1 ,11t 111 , O ,1! I-f 2 L- i;,

Tll. hCii h, rn.~tlri.iIi rse ac 1, se '' 0 01 'ý*i "~AiiU::iei

obsers X1re e ,iii 1.iluite mechani,-, of tte- i.- ea :roc s'i 11. i Oel

hai' n''c ilern;isi/c- i,,n Crs'-section, s\ henl (1ol,

toih;cc n,! lour point hcnoidin In ilicst:

'es!" ',1 i. 's-a le i adiiisi th rilt., sa i nd 7- .

1ai 1r-hutioi iii- sn/a :Id tensile si 'C ., 4 ' n

's iicin i!, rcrs0,mi jai Ceurrina in
hern'w o: .,il.!i'c'

p.ý.. neiile test- arc also' prt frmcd T he

n1ICalc "is a'PPW sup lici platie tori 3, min thick and

iskaN cut hdal-ond tzrindmtne into beams and uniasial
specimens. Bcceiuse the Nupplh kt mater%-al% iss limited
It %was onl\ possible to performti so test, oif each so that the: ratio m aIxapprO praic"
componcrnt and loading. In Lill cases the experimental selection 0! Lht ratio iý i hli Ii': tehw' beam. ma\

variation \kere fsiin5 ail in shear the dimensie-is .. re such that dtilection
Idoniinated b\1 henL!n

-7. 1. T/iti-c-poitir bcnd !cit a-'iloJ nd irwiangidw The beam, ii crc load a UTIc !imiurV occurred and

i rosys -3ec nioi the applied load and :enira ii splaicemeni ikere con-

Three-point bend tests [Fig htail \ere performed tinuousl%. mcasutck4 a, iajdiatcJ In Fig 2(w Using

on beams of' rectane~ular cross section wýith three equation (Iithe test ircsults sh,3%%n in Fig 2 ciare

different ratios of the span I1) to depth th of 6 67 xrse n et.o eniesrs dteio n
shear stress deflection curses re-spcetit cl\

The mode-; of' failure ot1 the three-point bending
P, 6 spectmen% sho%%n in Fit! 3ia-ci are tndicatix of' the

different stress- dL fect ton characteristics obseri ed in

Th Fin,2 The mode (it' failure for the short beam
1I 11 7.1 sho\%n in Fiv `iia) indicates that shear

~ T cracks formed uniformly throug'hout the specimen.
\] h2  The formation of' the crack, corresponds to the flat

P'2 P2; L portion of' the load mamima in Fig 2bi Thereaf-ter

1ý2 1,2 bthe load dccreates steadil\ %Aith increase of' central

di splacenment
The failure modes foir the intermediate length beam

V (~Il/I.I 13) show.n in Fic. 3tbt indicate that lencth%%ise

P/2 P/2 shear cracks propagate along the middle of the beam
from the center to the beam e.-trem~it. The formation

L of this crack corresponds to the first major load drop

D h evident in Fig- :(a), With continued loading a second
crack pattern in formed at the quarter points of the

TDb cross-section and corres;pond ito the second load drop
P/2 sho-ssn in Fig. 2co.

The failure of' the loni- beam sho" n in Fig. 3(c is

I ~ - -a fibrous tensile fracture and occurs in the cross-
-section under the loading point Initial failure is

Glued, lampedfollowxed h,, a mator load drop as indicated in
Glue, ClmpedFig, 2(b) \ihtch is follosed bx the formation of a

longitudinal shear crack. Somec compressive crushing

l1 00 0 .L~.- 0 0 0 0 4 . occurred at the centei- point of load application.

R &O'b'd~ r:6_ý(0-o Howkever, there is no es idence of debonding betw-een
LJŽP2.2L2.22~ 2 l~.-~.Jthe compressise kink and the remainder of the beam

35 25 35 1The results of these tests indicate that fibrous
- tensile failure occurs when the tensile bending stress

is I11X0 MPa \shile shear crack formation occurs when

[mm] the shear stress reached 29) Ma. Using equation I1a).

Fig I Specimen geometries. dimensions Dt l0mm. it is eiident that the failure mechanism changes from
I =2t. 40. go MM. Jy = i J= mm = r I M,1: MM. one of shear to fibrous bendine failure wxhen the ratio

I20 mm. and I. 35 mm / i. exceeds 20.3 A, noted earlier -,,.hen failure is i
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ed tiht• thi h c,. n " eHe! rcil h kimin ,

I//

"-l" ýCm inI ] toI h I pk l -' ' . . '

" ~ ~ ~ ~ ~ ~ Th exermeta re-.lt thor\ lhe tallUf•, !i c]riaio, dc.,oll hed-

-2 C ".-.. . "• N,; 4f

ThIres m no , h\ar or the central decion Li re1io'nh iIb• 2: • .= JTo ii oid *hear Liilure in3 the¢ ea.tirles\ere.. p~rt the

I ends~ of the bean} vere rcmntotced b\ di~lmnlruml
"/7 Siee%,e: glued into posilion

i ~~The experimenctlal re~ult, for the \.ariaiiin ol bend-

t'= ~ing stre~ss " ,tlh the central deflection are ,,horn in

II#' Fig. 5. 1-racturc aiarted w•ith delamination of a thin

surface foil on the eornpri:Nion side ol the specimen

[Fig. 3idul Exten-ýie cormprc-si\c failure occurred

thereafter in the matrix and durinu this period the
load displaeeiaent diagram sho%%ed erratii behatior
with increased displacement accompanied bh altQr-
-nalc load increase and decrea.se Generall\. the load

increased with displacement until fiber tensile fracture

. o occurred in !he ten,,!c portion of the bea at a

* :nominal bending strcs% of 100)lt MPa The final frac-

ture i. accompanied h\ Toad reduction t hich is less

dramatic than e\ident in the three-point load It.s

"7 , , ., (Fig 4).

2',l

(a)

."// Z• i (h

- !-

1'ig 2 Load displacement relationship for three-point
bending /1/: t3) ibi Nominal bending stress displace-
men relalionship iý; Nominal shear stress-displacement id) .

retationship

fibrous tension it is followed b) catastrophic load
drop By contrast when failure is b. shear crack sr,.,: .... I ..... , ,,i,,

formation the load drop is less dramatic and a Fig 3 t Schematicofmutipie shearfailure i Schematic
diminished load is maintained during further of mld-plane shear failure Icg Schematic of fiber tensile
deformatlon. failure idi Schematic of liOur-poini bending failure
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- - as ,idcd. it o a,i kh,ecr~ced that the detormaiti.. the

The: fran i-k!ýMiiee reVli nk1df .reuii ini

111tlic-x 4o'.turx %% c tii he t itc 1, 1),0 IP.i .ind./ e6MUInIiiii Uiiii hill xii1',x, 1 2-,1, \111". Ttwe aflt ! *i he
- I'ie~~toi x4 ii i.i.."kith the1,O. irrcdi1_lkv of

111,1145\ eý4oiu % iwt.t~~r es .a i111.i.

%%Itih % Ui ,ual \4h the t.Warek -ucdeebem

iCitiiix-Ciit 4; netl hali,!e ttidure Reicin2 i4. o

ie'ihi it ni\t h,: !'~re h.' xinclt. hhe:k puli 5 .l

- 4',.aC~.'diii, r''the iort11.:tt44 0? hundle-.

A ~'seflst xpcýInl-cn \5.1' fl1c-lsdoae to ; Sres, of!

NhIov'cd it,, xIcn l otten4in',4 atý \11 \II' Le t') The

%al uc )' OUM ,'Ire 1n!UlhJx It'': the UnrIC"iked kpeL I*

men belore xslttCfliflik 0,NarrCd %%dý ino (.ia After
-I \'ra~i.bethtnt~ dx . 4.Cli~fi i~dhnxnp 1ollenim, the \,atite 01 )i OU2IiiT110mdulUs 11 1 " ()Pa

40 e~ 1 .. d .iits tM lst dlCr, 'C ¶ s'an nit is ohsb,,er etihat thec prel '.ided xpce:Inle i ha' the

Name %ailte (onecquentis it can be deduced that
The f'0Lr-p4 'n1 load (eo indicates that a crushing c~rackinne )Cur, in thec mia rik a( '50 \11Pa and that tit

eesntprcts~ise 'ir,,r occur' at 400h NIPa. Failure bý Ciffect is to reduce \ ounke\ modulus1 fromr, It,() to
fiber kinkini: ix not apparent w.hich is tvi he expected I1'I GPa or 1', It6", The addfitional strain sobscrsed
since thle buckline, stress, calculated accorditni to the on crackinp isA( 0it',,
model l's Rosen and Ketler [141 is, 44 CPa. a value The growkth and densni of- cracks in the matrix
much hi-,her than the obsersed failure stresses. From %&ere measured throughout the test bs taking replicas
the rule otI mixture' the matrix stress in compressive of' the surface The replica procedure consisted of
failure is estimated to be i40 M!"a Mficrographic melting an acetate replicating tape onto the surface
examination reseals that matrix mieroeracking ap- and peeling it from the surface after a period of I min
pears in the compressive region. B\ counting the spacing along hift% fibers at each

Stress level it was possible to determine the tariation
of average crack spacing with stress. Referring to

2.3 The uniavxia/ rest Fig. 8 it is seen that the crack spacing reaches a
The combination of the hi2h tensile streneth of the saturation value of approximatels 100 umi for stresses

fibers and the poor shear properties of the matrix of 300 M11a and aboxe, This %alue of' stress coincides
introduces mai' or difficulties when the material is with the onset of softening indicated in Fig. 6.
tested in tension. After experimentation with different 'The failure mode in tension is illustrated in Fig. 7
geometries and gripping systems the geometry illus- from which it can be observed that the fracture runs
trated in Fig I c) w as found to give repeatable results along the whole gauge length at a small angle and
and avoided failure within the gripping section of the then branches to the side at the grips. Examination of
specimens. In order to minimize bending stresses the the failure surface shown in Fig. 7indicates the
specimens, %%ere glued to the gnps. after which the formation of bundles of fibers, the bundles being
grips 'sere mounted in the load frame usi .ng a two
component epoxx, glue After thc glue had set a loA ______________

clamping-pressure %;as applied to improve the
strength of the adhesive joint. In order to reduce the
Snear (iTeSý in fleii.. itisi Olhe tc~i spCCUIiMIS wereC
deswicnd to be long and thin. The results of the
three-point bending tests indicate that the ratio of the -
maximum tensile strength to the matrix shear
strength is 3i1 IFor the geomeirN selected the ratio of .s

,he averave tensile stress is 70 times that of the
interlaminar shcai siress- that fqtilure inside the
grips "sas asoided Both strain gauge and cross-head
displacement measurements were made. The strain

assa measured with a 6.3mm long strain gauge
mounted on the specimen and the ram-displacement _____________

was measured h - a displacement transducer. The r. c oio Cs clt C2C
sirain-gauge %tress strain relation and the estimated
Naluc using the ram displacement are shown in Fig 5 Four-point bending stress- displacement reiation-
Fig I I While shear failures in the grips were ship
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The mode' of failurC c% ident tra-m ihe teqt proer.in'm
are fiber tensile failure- mattri\ ope\o tallure.- L
mintrlaminar matrix shear anid ma~trix tensile I, I E
crackine.

The ,tresses correspondfing to the iailure art: gitcri %there r, is the tar tic).; siesAhen the mnatrix

in Table I crackinc Naturates,1 .\t the \olume traction of fibers.
dIs the tiber diainieter. -,I, the shear stress bet~keen

3. MIATRIX\ VULVRE AN) I OAD TIRANSFER fiber ind! matrix anti I-, and L, are thc elastic: moduli
DISTANCE of fibcrs and matrix respeetiwhl \k hen S =1001 Uim.

I = (15,. d 1: ;im. Li El = 2 35 and r, , 290 NMI
The experiments indicate that matrix failure can thL fornulla ets cs the salue of the shear stress,

take one of two forms In thc unaimaf test matrix : ; ~ hs~ orspnst htotie
tensile failure is, e\sideni mith the appearance of cracks b'\ k~eiks et ati. [5] from fiber push-through tests

(:UK

Fig 7 wa Schematic of tensile failure (b) High magnification %ievk of fracture surface
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.tileat !Ji'Urc 0.':,CU 1 M thI.- llAiris I\ in irc,:1wn 4 1 Sti•el•l ,f tt i si \i, t, i n , V+, It'l C':?

parallel to ih1 fihoe, 'k, ti, c .i ca h , trc1 ' , ', i, i!,, 1.,P,

" N \IP, I :1 ,.MLIMXId thal the thb•c. ate "iehbull sttati"tk,, arc knol> to ivi + ans k:!T.c,
rardonil di* , \ ri bute... thcn th. irkei ,,; .xý ot the en ,, it describmv the sli neih )I rlber ..t,'ers

matrix in shear 1, th1 same .!- the \,,um: fraction \ndcrsson and Ws arren 1131 ha\ - st.ditud the ,irength
ra no / Since t t 5 the ,he.a: wx i\ e ,,res ~ o0 as receised Nicalon tibcr,, and c.onluded tha] the
5,- .,Pa The m.atrix tCnislCa sire>, . strength 0f the ttber ;ran he denaibed bt ,'r'b,
from the uniax.ial tensile tc-t s- I I l Pa ( oirnp.ar, r sir ah-iihi f'i th af I alure a ecrib edng to the cib uH

of the failure shear stre,., kt .,S M P\ i . %,tith the I niatrf rel Ptoon

failure stress, oi :1 ) 1 M Pa su gCest, that the crterion

for main- failure is a maximum shear sires of P -
approaimatlcl 5'; MPa Sire,, corcentrnanon effecits / •

hae not been included but these are IlkeI to be
modest. \here I. is the gage length and ,n and er are material

The fiber transfer length L. is the distance required constants
to transfer stress from a broken ib t the matrix In a stud\ b\ Prewso 1121 the sireneth of Nicalon
This transfer length is readtl, found to be fibers \ere measured ahter subiectir.V them to the

processing route used in the production of the corn-

(4) posite The statistics delining hber strength can again
be described bx equation (5 Preiso 1121 chose to

shere a, is the far field composite area The stress for present his results i terms of the aserage strength
tensile fiber failure , aries beitseen NO(O and 12X) MPa of fibers 25 mm long for sshich
according to the loading state. With d = 12 jm.

iT 1500 MPa
J= 0.5 and -. = 5 MPa in equation (4) gives transfer
lengths between 1.07 and ILt) mm The spacing of the in = 4.0
matrix cracks in uniaxial tension is IM0 jm so that the
transfer length is approximatel\ ten times the matrix for

crack spacing In terms of the fiber diameter d. the = 25 mm.
matrix crack spacing is S ý 12.5d and the transfer
length L, .aries t-,ciseen 125dand 185ddepending on
the loading condition

4. FIBIR TENSILE FAILURE

The experiments indicate that the stres., at \hhich
tensile failure occurs in the fiber is dependent on the
geometir, o1 the specimen The obsersed stresses for
fiber tensile faidure of the different specimens are c
gtien in Table 2 sAhich indicates thai the failure
strengths "ars bctsseen "791 and 1190 MPa The fail-
ure tensile stress o) the matrix is an order of magni-
tude smaller at 110 MPa and the interface shear
strength between matrix and fiber is 5 MPa. It seems ,
plausible to assume that the strength of specimen is <
dictated b\ fiber strength and that the contribution of c-
the matrix to the final strength is negligible The
implicatiown of this assertion is noi, studied Fig S Stres•s v.s iatris crack spacing
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1, 00 NIasott roeim apprcil:. re c,,,N

Th e ,ib eraee ren eth om the1L xibersai tor prtss ii 4:fl i ur/j: if/i /coo 10~ji

the hhr 'iregth , cite i~onhinatlo' ,I iinii\ dual tibey pulloulirld;
The relotonlhlP. h tMeeri the aserage -srength tii b undle pull-out Th1w bundle odiiiitcr i- prirosi-

for fiherý of sac'e length 1, and (-. for reference lcenth mT11,10 Io fiber diamntctr, and the pull-''ai ~'?ngth 11,
I in the kk cbull relationship is f~rom equrio (AI ' fiber ui mieter'- lom, ( kinsider ttOwi th,:laure Ocirit

/.-i, of'its of 01 fib~ers \11 dianwter i embeddled in a
'2'k htidet o" miariNs 0,I -iji 1) Th lodtase

"shere F is the Giamma function. When I distanfce lor the iiberýtsI

2> mm and n; 4 equation it,) cises the result d
a = 1650 %1¶Pa.

The cspression for the bundle strength 5, in terms irof- the aierage fibersteghd is 'i ken hNtA2i A hieh \shere ra, is the tar field sirý and -, is the shear
is tent strenviih of' the tiber rnatri'. interface Since the fiber

G~ f(m el - can break an\,Ahere in the element and still pull-out
6: V(II I" from the matris the bundle elemnent lenetih is it, = 21,

Usin 6' = 1 50M~a nd i =4.0 or lenth f A the number of breaking fiber' increases the

25 m th budlestrngt ispreictd t be restraining matins shear stress on the element in-25 m th bunle trenth s prdiced t he creases until failure Occur, h\ the bundle pulling outr,=450 MIPa which is substantially less than the from the matins (Fig 9ý. T'hen equaling the shear
value of 790 MlPa observed in tensile tests. force fromn the hiber,, to the shear force from the

Wetbull weakest link theory has been used to urudn ar\g~stersl
determine the strength of the beam components using surndnmaixiesterul
the procedures given in Appendix 2. For ease of D = m/t.
comparison wtth experiments the strengths have been th -re -,is the composite shear strength and T, is the
normalized ssith respect to the strength of the longi- interface shear stress. Using this result together with
tudinal tensile specimen. This method of presentation the definition of the volume fraction .I gives the
has the advantage that the geometry dependence of number of fibers in the bundle and its diameter by
the strength of the exponent mn can be assessed
separately. The resulting strength factors have been I >D r,
calculated' for d19eýrent values of Weibull index en and an d - (ab
the results are shown tn Table 2,

While the predicted strength factors order correctly D
the strength of the components. the predicted range
of" strength for en? 4 is generally greater than that
observed in experiment. It has been observed b%
Prewo and Brennan [2] and Curtin (161 that the
measured unraxial strength corresponds to that of ,
fiber bundle of a length close to the stress transfer 0
length of I .01 mm %khicl- is substantialls shorter than
the gauge length. The un.-)xial bundle strength for
gauge length of 1.071mm is 910 MPa which overesti-I
mates the experimental uniaxial strength bN 15%. 1,
This crude calculation does indicate howev'er that the
matrix is likely to play a significant role in establish-
ing the composite strength A more detailed analysis
is no%4 performed in which the role of the matrix Is
ini~luded Fig 9 Shear stressý distribution of bundle pull-out
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The solurnc of the elemient i, then CdJulation, for diflerent a.iue, of - li ound !h.0

Ill ~ lie trerli!: ctr? N~. im:(ca'ed tko MP"\R.(

The eleinent Ntr;:nath i. ý,nntilcd "i A`PPcnci ki 'iii ot, h Unto:1c rie tidliilt * ",-, nvri~-.l

trom tme ~um of the %iretlitIn ot ihc unru,.oky, Ii vr'c to 1 ah. 2nh-v i at n eo ol .'''* "

and the pull-out conitir'u:to- o! titý btý,kctt 1:Trx-r ~o'n trer,,mL,tot: t o: 1) : \kheitt w thie

Iht tev, 7ie in unhroikn tter t~ tiiý ceýwew wo'e ol~' ,i~trt'n1:0; tkhi-

cond~ition.1) t.lnr udeo !Appendik 3) 1wr'. wo t \I : 1exeAoTfl ,owee hhe, k preUIn "-,

o) 0 i.nwhi account' loarhe ohweT~ that'cc;e hi. sprt.

bundl eleen It heah i ýepedta hI Lan aitrenp made tor. mae miim crackd n 1arn~ toP. v
conriiiio mifh athen ma te rhe rx toeene the thiitc :roh

contrthution~~~~~ oftema6xtotefr te,~~~l reduc:tion in the tensl~te elastiic modulu' ANn
neglected. Assuming further that a %keak clernent't cla'.ti s.olution %inch al' .% tor the d.,flerenti .alue>

reaches the load maximum locally and thit the ;train o, elastic rnoduii in tension and comipression- is
is constant throughout then the contribution off tihers ,i peus4Te ut !tcsml

ito the tar field stress e-, is calculation succest that the miximumn 'ensue Itressee

let lit are 5', less than those calculated using simple bea.~n
theo~r\ T he mouithed experimental stresses and the

where / is the fiber volume ratio coirrsponding strength factors are giecn in Table _2
Equation (10) is svlsed Iss iteration and "~hen Another effect n',"s he tintroduced bý\ considering the

7,= 5 MPa the element strength is found to bL possibilit\ of failure on the surface I1 the calculations
1220 MPa Using equation 18) the number of fibers in \v.hosc results are gisen b\ equation f8) are repeated
the element is n =72_. the diameter is D1= 12d and for bundle fatlare \%hich 'occur on free surfaces then
length Is = 64dý These predictions are in good agzree- the failure elements now. contain 36 fibers \%hich is
ment with the observed values in Fig 7Nh. half of those in an interior element. From equation

It remains to relate the strength of the element 1121 the corresponding Weibull is 15. The predicted
bundle to the strength of the uniaxual specimens used failure stresses using th'e internal and surface elements
in the test program. Since the bundle element con- arc showkn in Table 31 The volume and surface
tains 72 fibers, the statistical sariation of bundle predictions show. little difference and generallyý agree
strength is less, than that of the individual fiber with experimental obsersýattons
strength for which mn = 4 If the statistical variation
of the element bundle strength is defned b\ the .PRGESTDM E
Weibull exponent M then from Appendix 3 the5.POR SIE AAG

relationship between m and M is In the majont-, of the tests the attainment of the

1.44n~ maximum load was followed by dramatic collapse
M =(I2 Howkever. in the case of the three-point bend tests on

_____ - the short and intermediate beams the attainment of
I the maximum load \%as followed by, progressive shear

With the number of fibers in the bundle n =2and failure of the matrix so that the load drop was less
m = 4 the value for Ml is predicted to be precipitous (Fig 21 and damage formation was

21.6. accompanied b\ substantial energy absorption. The
M = 1.6.three-point bending response of the long beam with

This high value implies small statistical variation in
the bundle strength Nesertheless. wihen using the Tahi Conrnp~rson of modei p~edcicunn ith expernmcm

weakest link procedure described in Appendix 2 with sMod'hed MACe Predicion

the bundle solume given bN equation 19) predicts the c~pcrimcni.i \rilumc Surface

strength of the uniaxt-! test specimen to be L ~ llSeeee

(T= 845 IPa. icnsinr
Four-roini iS (QQA Q49

This value is ~7% greater than the experimental %alue ihcndmp

of 790 M Pa Threc roers 1T Iti V- 01-

As an aside it is interesting to use the model to breidrn -_
detertmine the value of the interface shear strength -. Threc r(,n 111 121o il

which gives the greatest strength. Repeating the bcdm
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rectangular cross-section iFig. 4) also indicated that Fractuted
progressi~e tensile fibers dani~ge resulted in ain abilit - Region

to sustain load A ith continued displacement. The rtssi,
forms of progressixc damage are no%ý diýscused ho I ho

h h
5.A. Pro tgrvssne' shear dam~agew 1-L A T_. .11.

When the intermediate rectangular beams are b b
loaded in three point bending shear damage occurs
when : = 2'4 MPa. The onset 4 the crack along the FEl I1 Pro-rev,,1 dnae'- ': t! ir, - I.n'
mid-plane of the beam is accompanied b% a sudden triangulil beam

load drop. but thereafter the load increases with
further increase of central deflection [Fig. 2(zt]. The The load P, at tirst shear lalurc ,n
dotted line indicates the load displacement diagrams p
for the combined effect of two beams of half the
original thickness. The experimental results indicate
stiffer responses than the model predictions. How- while the load P, for multiple crac-kit is
ever, no influence of the sliding resistance at the shear P,
cracks has been taken into account and a consistent -1 "•- i.-7
bound calculation can be made bN assuming a stress hi

state distribution consisting of the two stress fields With r, = 29 MPa and 5, = 5 MPa these rcsults gis
indicated in Fig. 10. The first field corresponds to P. p,•
beam with a maximum shear stress of T, = 5-0 MPa - = 38.6 MPa 4. - 3 MPa
which corresponds to the sliding resistance after bh hhi

fracture (Fig. 2). The second stress field corresponds which indicate that the initial and multcruck loading
to that in two independent beams each of half the are almost equal with the mulicracking load being
original beam depth. The resulting load indicated by slightly larger. This is confirmed bN experiment
the solid line in Fig. 2(a) displacement prediction is [Fig. 2(b)] for which the corresponding values arc
close to the experimental observations. 35.5 and 38.6 MPa.

The next shear cracks split the beam into fourths
when the shear stress reaches r, [Fig. 10a)]. The 52. Progressire fierfailure
second split occurs when T 4- 0.7 5r, Z r, and follow- Referring to the load displacement relationship for
ing a similar procedure predicts P = 248 N. This is in three-point tests carried out on the rectangular and
reasonable agreement with experiments which triangular cross section (Fig. 4) it can be obserxed
indicate the second split occurs at a load of 230 N that the maximum bending stresses for both cases Is
[Fig. 2(a)]. approximately equal but that the triangular cross-

In the case of the short beam shear failure cracks section can withstand additional deformation before
appear to occur more uniformly over the section [Fig. losing its load-bearing capacity. Visual obsersation
3(a)]. Assuming that the progression of cracking dunng the test suggests that local tensile failure
continues in the manner described previously then a occurs at the tip of the triangular section and that
multiple cracking stress finally would have the iorm damage in the form of fiber tensile failure grows
shown in Fig. 10(bl with a parabolic distribution of
shear stress with each element of maximum value r,.

SIISll Ditiwi lm • In O N' IIP[ Beam

Slid&, Sitri 94fcf-g Stres/

/

Small, St, . t,. t0 1. Wi o olf u5i split s#.--*-

Fig 12 Calculation response of rectangular and triangular
Fig 10 Stress distribution for split beams section beams
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progressively through the section bef~ore Tolai failure Lahoirators 6wualdhrd I I, ( l .id1hin'-c

Fire-. I I,)'occurs. fo If k cseet~r '~ rj1, P
In Appendix 5 .1 C-ICUkalttn ha' been perl'Ort-ed in mIIý 1Y0

sshich a damnave fronft Is, a sured 10'ad 40%acc acrojv' 11 ( webcr: ad B M~ lk,~'e'r J1 %f-i Pr S ix;
the bearn eca.Th calculation I, based kia t he soI 1)i 1

aSSumpIMP10n I th I aiiure occurs. )%hen the bendiniz IPe,.J~aa- . 1 -a a.

stresý attains; a salue (if bctiding st res of I sI (t N I pa'I kie-raR1

The results of these calculation'. arc shossi III I it! 12 1- H Xk Rosen .and . Kvtitc /j_., ,
for the beam,, %kth rcc~ianvular and triangular see- Rt- Ptn . ý Ix' F nL Roror~-; -:r \ a-

ti011S The compari'.on (if the predicti ons %k Ith exper- 6' 1t ~-d, Iiurelu w' \js~ \ .- :'\

imental obe~to in Fie 4 suge~est'. that the D( (\"\' 30
1 1) \kclk' ( \1 Dla jnc \\ 1) S, . !.:1

supportingL assumptions capture the essence 01f the Slnlr PP 14prr Nlcivr.,ý Rc'c,t:,%ý
beam fadilure. In the ease of' the trianiarular beam. the 1Pittsburg. P., aIS~
progressive failure imparts ductile characteristics "t -N ( aaron, Thvora 11i C7-ar& ppni.

arnicmratri~ Con1PVa'.a-. pi !'4ie .. 1'nrn.iM1If L. Daniel, R"" 4'N~L'. 183. -:o,

6. (ONCILLSIONS Is (a R IrAwin. Rciat;%ci una-spi~ciarwt, a' i. ir': r

The strength of simple components e'nststsng of a mciateb I 1q6)31 mo, AMlcor \. -t

glass matixs retnf'orced by silicon fiber fibers has been 11; Z Sit Cy B.a'. B ar. ino I ( \Winet ii hiotrop

investigated. The tensile strenL'th ot the brittle matrts rr.caling and Imnplicaioian, lo Int iaiur ic n n, x

is approximatek. I 10I \1Pa \Ahile the tensile strength Report %Ieenianic:a: Enananccrmane d mmaeri., De~pari

of the composite \ arics between 790) and I 190 MWa Moti, UC Santa Barbjarj Jul, 'i'aiii

depending on the form of the loading Observation of' APPENDI\ I
the failure surf'ace suggests the existence of- a fiber
bundle element whose size is dependent on the prop- Crack Spatcing In Mutarii and Pull-Oat: 1-fnerh

erties of the, matrix and the fiber--matrix\ interface. Wheny the matins as uncrackcd the Ntre'.a,'', ra,:. 11ha'
The fiber bundle element has a strength of' 1220 MVa matixs and i. in the fiber are

and a Weibull index of Af = 21. When the element is 17 IC
used as the basis of the A eabull weakest link calcu- - Z-- - - ,'
lauions it is found that the predictions of the model /, E-l L

areto within :% ofthe exprimnta obzevtjioensher. '

An unavoidable drawback in this studv has been w here f is the fiber solunic fraction and L and E', are the
elastic miodula of fiber andi matins respyccti'.c!s When the

tevery limited availabtlIt\ of the material,. but since Matrix stress reaches a critical salue mainsx crack, wynm and
the alu ofAf fr te uit ell s lrgeit s exectd searstresses anr biseN eeri fibser and matixs ff iti'.assumed

that statistical variation is small. There is an apparent that the shear stress at the fiber matixs intcrf~a~e ax ilier

lack of tests on large specimens which would help the distance L over which slip occurs can be shown to be

establish the importance of scaling effects. The pre- L o

sent model would suggest that scaling effects should d' 4-,l

be modest. I~ f-E,j
where d is the diameter of the fiber

Ac-knowakdgemienr.s -- The support from the Air Force Office Saturation is reached whten the crack spacingt S is twice
of Scientific Research under Grant 9(1-0132 are greatly the slip distance L which gioes the condition
acknowledged Helpful discussions and suggestions from
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A~PPENsDIX 2 H1 Uniform bending bseanr ot length and trica.uia1
crosNscctiotr

Ife, 'hudi F:bh'' Bontd, and Wc akcsri L ink Stjtwi' o
R

The pc~due deekqs~! 1. vcilul: .ij olI are ecloped 1
IT; the oSTýIiOW PJrolY but jor xniltnsthe ý.icljiions iher. I Ol te lotw! (!unto U;td r, he1,
art: orpictQ, I ornt:'0 detai: heridin stressN In the beamn

F~ts'. dihltib~rr'~(2, rThrier-poinit benfineg rectangu;,i? r'01

T he prohabil~t it o 05 ii %u 0 1 ott;her, subicted t o st re~s a I, 21f* I)

P e\pj )jAhere r ,s the totia solumv of! the beanr, ar.,t rI, ith

%;here I leriith ol the tibetr. r -apid stress. I maximnum beding sies,

reference lencith correiponding to stres, r a. r material I~Trepithnieadtinurcsslr
propcrt\ istress %then prohabilit\ ofsursisal 11 P. = cI e.ý'ý
and ni n mterial constant The probabilits of failure is I rml - 21

w. I here r' is the total solume oi the beam, an!c, I, Ifith

The average failure sires, of' fiber% is maximum bendini! stress
These results can be used it, compare the strenglhl 01 the

P d nil a-e, r different components and the loading 'oitdmiiort The same
1. ~~~ ~ probabiltiN of failure requires 8 to, be Ce)uai tor the dlen

Ali geometries

%here V is the gamma function APN I

Properties of fiber t 'undle The Bundle Element Model

Consider nosk the properties of a bundle of N fibers be The load carrytng capacit\ of the compostit Is. giser. hiý
loaded simultaneously by a load Q Let continbutions for the unbroken and broken fibers a\

N = number of fibers in bundle if1 C = , -. all - Pi tA I
n = numbers of broken fibers
Q = applied load where a, is the stress in the unbroken fibers, r, is the average
o; = average stress of N fibers sliding contribution from the broken fibers, and P, is the

06=average stress of n fibers. survivor probability that ts equal to the fraction of urbro-
ken fibers.

Then The unit cell height is given as 21' Where l~is thr length
P, = Iof the longest fiber that could be pulled out and cause a

reduction in the load carrying capacilty Axial equilibrium
and for a broken fiber gives

The maximum of the average stress occurs when
ýar, where r, is the sliding stress at the fiber-matrix interface

-= o The nominal stress in the inbroken fibers is assumed to
Pa be so high in relation to the variation induced h% the matrix

which gives the result cracks and the friction at the fiber matrix interface that the
~ rz -1'fiber stress can be assumed to be constant- The survivor

-rn probability is then gtven as

and the maximum sitress tie P,=e CX[2S~- tAMt

do l~ II, l1
"Iext~~J The average stress due to sliding is given as

The ratio of the bundle strength to the mean fiber strength -- 4/' (A6_
6, is

- = -___ __ A 2) where 1. is the average pullout length If the stress Isfii V [im - ItI nil approximatchN constant in the unbroken fibers
The iieokeri fink theori

Using the eAczkest link concept the probabilits of'survival
of the component is the product of the survisal of the where 1" can be determined from the frcquenc% of the
subelemenis Hence Weibull distribution as

where the integral is computed over thai part of the volume Using equations iA4) and tA5 in A6i gives with (A7)
I for which the stress is tensile r a a

The value of 8 has been determined for the geonetines i AgL] )2)2
studied in the program. 1i 2- "
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where -" is the incomplete gamma function. Using the upper suhbjcted t. moment the neutral axis no longer colnctd's

bound i:E. x) I i: - exp -. )] as an approximation with the ,enter Repeating the assumption of h. a s, am

for gaie, the tinal espression for the aterage stress theor• it is stmpoe to demonstrate that the miktmurtn tensde

r- 1stress r7, is related it) the stls 1, tsUjsCj! bcam theor.'

expi e b, the formula
a ~ ~ ~ ep -' 2 a"ePr-2 E

w'here 1 e,,r d where E: is the modulu, of the uncra,:ec por•on, ani.
S=the modulus of the cracked portion ThLi positton ,I the

2/, r,,,rnt neutar iaiaer moses and the ,olume subileerei to tersior. i'

For the parallel model the average strain is equal to the increased %,kth the factor

strain in an unbroken fiber Hence

The highest load that the bundle can carry is given by the \- E:

condition •APPENDIX 5
-=0

that gtves Post Fracture Load-Deflection Curt i' i Bending

21,--rdt(d, The moment-curature relationship for post tensile frac-
.r1 ......--~[ l(A ,1 ,ure is estimated bN assumtnL that local fracture occurs

T t" ' - dLd L j ,J 61)J when the bending stress reaches a crittcal salue of c,

For a fiber bundle with a limited number of fibers there is In the case of a beam ibth rectangular cross-section the

a statistical variation of the strength [17]. The .ariation is current beam depth is h and the fractured region is t/t,. - h)

given by the normal distribution with the expectation value (Fig. 11).
The relationship between moment Ml and the .uricni

fe =depth h is bh'-
and standard deviation M a, (A' 'a)

= Af I -7 )P and the curvature is 2or
V 11 2, tAllbi

where P, is the survivor probability at the load maximum Eh
and n is the number of fibers in the bundle. This corresponds The relationship between moment and curvature is obtained
to a standard deviation by eliminating h to give

lP- I 2cait

Pt 
3E- - - 1A12

for the stress in the unbroken fibers at the load maximum. Similarly the relationships for the beam of triangular cross-
For convenience the normal distribution is approximated section are -

with a Weibull distribution that has the same standard abb PIt -A6Ia
deviation. Using the approximate relation suggested by 6 3-h

Irwin [18) 3o, 2--h

6ý F1,44n K h(3-hý (Al3b)
At 1 -I'P, -I where

APPENDIX 4 When the relationship (AI2) and (A13) are applied to the

Stress Distribution an Beams with Two Elastic Moduli long beam geometries in three-point bending the load-dis-
placement are those given in Fig, 8 from which it can be seen

Because of the matrx cracking which occurs in tension, that the effect of damage growth is more pronounced for the

the elastic moduli in tension and compression differed by beam with triangular cross-section This result is also
16%. Because of this difference when a rectangular beam is evident in the expenmental results shown in Figs 5 and 10
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ABSTRACT

A computer simulation of multiple cracking in fiber-reinforced brittle matrix composites has

been conducted, with emphasis on the role of the matrix flaw distribution. The simulations

incorporate the effects of bridging fibers on the stress required for cracking. Both short and long

(steady-state) flaws are considered. Furthermore, the effects of crack interactions (through the

overlap of interface slip lengths) are incorporated. The influence of the crack distribution on the

tensile response of such composites is also examined.
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1. INTRODUCTION

The tensile stress-strain response of unidirectional fiber-reinforced brittle matrix composites

is characterized by three regimes.l- 3 i) At low stresses, the response is linear elastic, with a

modulus Eo given by the rule of mixtures. In this regime, there is no detectable microstructural

damage. ii) At intermediate stresses, numerous matrix cracks are formed, leading to substantial

reductions in the tangent modulus, Et, relative to the initial elastic modulus. iii) At higher

stresses, the matrix crack density saturates and, provided there is minimal fiber failure. E,

approaches Eff, where Ef is the fiber modulus and f is the fiber volume fraction. Yet further

loading leads to fiber bundle failure. Figure 1 shows such trends for a calcium alumino silicate

(CAS) glass ceramic reinforced with 35% unidirectional Nicalon (SiC) fibers. In this case, the

tangent modulus following crack saturation is below the contribution expected from the fibers,

consistent with observations of multiple fiber failure in this composite. 1

The onset of matrix cracking in brittle matrix composites is relatively well understood. This

has been facilitated by the development of a mechanics framework that describes the influence of

crack bridging on crack tip stress intensities4,5 (or, equivalently, strain energy release rates6-8).

In contrast, the evolution of multiple cracks is not well understood. This problem involves

aspects of both mechanics and stochastics. The mechanics aspect refers to the interactions

between neighboring cracks and their influence on the driving force for the propagation of yet

additional cracks. This problem has previously been addressed in detail for the case of

steady-state matrix flaws.9 The stochastic aspect pertains to the role of the distribution of matrix

flaws, which ultimately governs the spatial distribution of matrix cracks. The present article

considers the role of the flaw distribution on both the evolution of matrix cracks and the tensile

response of brittle matrix composites. This is accomplished through a computer simulation of

multiple cracking.

The simulations performed in this study differ from those of other studies1 0 ,11 in two ways.

Firstly, they begin with the notion that the matrix flaw distribution (rather than the strength
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distribution) is prescribed. The strength of the flaws is subsequently computed, taking into

account the crack tip shielding effects associated with bridging fibers. Both "short" and "long"

flaws are considered. Secondly, the interactions that occur between neighboring cracks (through

the overlap of the interface slip zones9 ) are incorporated into the simulations.

The paper is organized in the t3llowing way. Section 2 summarizes the relevant mechanics

associated with bridged cracks. Section 3 contains details of the simulations, as well as the

results on the evolution of crack density with applied stress. These results are then used in

Section 4 to compute the corresponding tensile stress-strain response. Section 5 provides remarks

regarding the correspondence between experiment and theory.

2. MECHANICS OF BRIDGED CRACKS

The mechanics of cracks bridged by frictionally constrained fibers has been extensively

studied. The notable contributions can be found in Refs. 4 to 8. An important aspect of the

mechanics pertains to the notion of a steady-state: when the crack length, a, exceeds a critical

value, ao, the stress needed for propagation becomes independent of crack length. The critical

crack length and the corresponding steady-state cracking stress are given by*

a. = yF,(1-f)E/OYo (la)

and

=o = {6Ef2tE2FD/Er(1-fIR}3 (lb)

"See Appendix for further discussion of the relevant mechanics.
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where f is the fiber volume fraction, R is the fiber radius, T is the interface sliding stress. IFm is

the matrix toughness, Em and Ef are the matrix and fiber moduli, E is the composite modulus

t f Ef + (1 - f) Em) and Y is a numerical coefficient. In this regime, the cracking stress Gc can

be described simply by

o</0o = 1 (a/a > ) (2a)

For cracks shorter than ao, the variation in cracking stress with crack length can be described by

an approximate relation of the form

Oc/oo = (a/ao)-n (a/ao 1) (2b)

where n is a numerical coefficient. Comparison of Eqn. 2(b) with rigorous numerical solutions

for crack lengths in the range 0.1 < a/ao < 1 4,5 indicates that n - 1/8, with the coefficient Yin

Eqn. (Ia) being set to 3.50 (see Fig. 2). It is of interest to note that the power on the crack length

dependence for composites in this range of crack sizes is much smaller than that for monolithic

materials (1/8 vs. 1/2). This result has important implications pertaining to the strength

distribution, as described later. For yet shorter cracks (a/ao < 0.1), the exponent n increases,

approaching a value of 1/2 as a/ao -- 0 13. The behavior of composites containing such short

cracks is not considered in the present study.

As additional cracks are formed, the cracks interact with one another, reducing the driving

force for the propagation of additional cracks. Such interactions occur when the crack spacing .

falls below 2d where d is the slip distance9

d = c;REA(1-f)/2ZcEf (3)
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The strain energy release rate for interacting steady-state cracks has been evaluated elsewhere.()

A summary of the pertinent results is presented in Fig. 3. The normalizing energy release rate (o

is the steady-state value for a single isolated crack 7:

QG = a3E2(1-f)?R/6Ef2E E2 (4)

3. COMPUTER SIMULATION OF MULTIPLE CRACKING

The results of the previous section have been used to simulate the formation of multiple

matrix cracks from various flaw size distributions. For this purpose, a one-dimensional array of

volume elements, each of unit cross-sectional area, was constructed. Each element was assigned

a flaw, such that the flaw size distribution was characterized by extreme value statistics, using:

F = exp -[ d,)] (5)

where F is the cumulative probability of flaws having size smaller than a in an elemental length,

L, m is the shape parameter (or Weibull modulus) and ao and Xdo are chosen as the reference

crack size and element length, respectively, with X, being a dimensionless scaling factor and do

the slip distance at the onset of cracking (given by Eqn. (3) with G = (7o). The flaw sizes were

assigned to element locations according to a Monte Carlo process.

The simulation of matrix cracking proceeds in two parts. Firstly, flaws that are initially

shorter than ao are allowed to grow to a size ao when a -Ž (Tc (Eqn. 2a). Secondly, for each flaw

of current size ao, the distances to tt e two neighboring cracks are computed and G evaluated

from the results of Fig. 3 (see Eqns. 34-38 of Ref. 9). If the condition for the propagation is

satisfied (G 2t Fm (1 - f), the location of the flaw is read into a second array containing the

positions of propagated cracks. Once all the flaws have been inspected at a given stress level, the
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stress is incremented and the process is repeated for the remaining, unpropagated flaws. At each

stage, the distribution of crack spacing is calculated.

The simulations were based on a relatively long gauge length (10() do) and a high linear

density of volume elements (50/d.). This gives 50,000 volume elements in the gauge length.

each occupying a length L = do/50. Relatively smooth size distributions were obtained by using

200 discrete flaw sizes. The elastic mismatch parameter, a = (1 - f)Em/Eff, was set to a = 1.

The shape parameter m was assigned values of 4 and 10, which sensibly bounds the cases of

practical interest. The scaling parameter X was varied between 0.01 and 1000. These limits

correspond to the extreme cases in which the vast majority of flaws are either smaller or larger

than ao. The flaw distributions are plotted on Fig. 4.

The results of the simulations are presented in Figs. 5 and 6. Figure 5 shows the crack

spacing distributions at three levels of stress for m = 4 and k = 100. Similar trends were

observed for other values of m and X. Figure 6 summarizes the trends in the average linear crack

density (the inverse of crack spacing) with applied stress.

For cases where a significant number of initial flaws have a size greater than ao (X 5 0.1),

the development of crack density with stress is identical to that found by considering only

steady-state cracks, as in our earlier work. 9 As the number of large flaws decreases (increasing

X), the initial jump in crack density at the matrix cracking stress diminishes. For very large

values of X, the curves become sigmoidal in shape, in accord with experimental measurements

on glass ceramic matrix composites (Fig. 1).

It is also of interest to note that the saturation crack density appears to be relatively

insensitive to k and m (within - 10%). In addition, the stress required for crack saturation

increases with increasing values of m and X. It would appear then that the range of stress needed

to complete the cracking process provides some measure of the flaw distribution.
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4. STRESS-STRAIN CURVES

The results of the simulations were used to compute the tensile stress-strain curves. Prior to

cracking (0/ 0 o < 1), the stress-strain relation is given simply by

O/Go = Ef/t (6)

where Co is the strain at the onset of matrix cracking (;O0/E). Following cracking, the additional

inelastic strain associated with the cracks is computed. In this regime, two different approaches

were used to compute the strain. In the first, the fiber strain distribution was integrated along the

entire length of the composite, taking into account the local variations in crack spacing. In the

second, the cracks were replaced with a periodic arrangement of cracks with an equivalent

average crack spacing, 1. The latter approach provides a simple analytical solution for the tensile

strain in terms of the current crack spacing:

E/fo = I+a.d/t tŽ2d (7a)

Eft. = 1 + 0x - 0/4d _2d (7b)

Both approaches neglect the additional elastic strain resulting from the presence of the cracks.

Figure 7(a) shows a comparison of the stress-strain curves computed using the two approaches.

The agreement is good, indicating that the approximate analytical solution (Eqn. 7) is adequate

for further computations.

The stress-strain curves for three different flaw distributions, calculated using Eqn. (7), are

shown in Fig. 7(b). The main difference between the curves is in their shape near O/GI = 1. For

small values of X (corresponding to many large flaws), the composite exhibits a burst of strain at

O/Go = 1, a feature not generally observed experimentally. For large values of k, the curves
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appear smoother in this region, consistent with the experimental measurements. Figure 8 shows

trends in the computed tangent modulus with stress. Once again, the shapes for relatively large

values of k are consistent with the experimc'-s (compare with Fig, 1).

5. CONCLUDING REMARKS

A critical evaluation of the model predictions through comparisons with experimental

measurements is presently not feasible. The difficulty lies in determining the parameters that

characterize the flaw distributions in real composites. Nevertheless, the results of the model do

provide qualitative insight into the general shape of measured stress-strain curves. Notably, the

absence of a strain burst at O/Go = 1 indicates that most of the flaws leading to ciacking are

shorter than the critical value, ao. For the CAS/SiC composite, this corresponds to a length

ao - 80 pgm. Furthermore, the range of stresses over which cracks propagate provides a measure

of the "average" flaw size relative to ao: decreasing the average flaw size increases the stress

range needed for cracking. Similar trends are predicted for increasing values of the shape

parameter, m. It should be noted that the magnitude of these effects will be influenced by thermal

residual stresses, as well as the onset of fiber failure, features yet to be incorporated in the model.

Finally, it is of interest to note the influence of the matrix flaw distributions on the strength

distributions of fiber-reinforced composites. When all the flaws are larger than ao, the strength is

a deterministic quantity, independent of the flaw distribution. In cases wý, ýre most of the flaws

are shorter than a., the strength distribution remains remarkably narrow, even when the shape

parameter m for the flaw distribution is low. This result is a manifestation of the weak crack

length dependence of the cracking stress (Eqn. 2) compared with that for monolithic ceramics

and glasses. It can be readily shown from the two dependencies (a- 12 and a- 1/8 ) that the effective

Weibull modulus of the composite is 4 times that of the monolithic matrix material for equivalent

flaw populations. This feature may, in fact, account for the relative uniformity of strain-strain

data for fiber-reinforced ceramic composites repored by various workers. 1-3
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APPENDIX

A variety of micromechanical models that have been developed to describe crack bridging by

frictionally constrained fibers. These have led to solutions for either the crack tip energy release

rate G 6-8 or the crack tip stress intensity K4.5 in terms of the constituent properties. In general,

the two loading parameters are related through

G = K2(1-v 2 )/E (A1)

allowing equivalence to be established between the different approaches. It has been

recognized, 8 ,11 however, that such equivalence is not always achieved. Specifically, the

steady-state stress intensity factor calculated in Refs. 4 and 5 gives an energy release r;Ite

(through Eqn. A1) which differs from that of the energy approaches 6-8 by a factor of Em(1-f)/E.

Thouless 12 proposed a modification to the traction law used in the stress intensity calculations,4 '5

incorporating the factor Em(I-f)/E, such that the steady-state values of G for the two approaches

are the same. In applying the numerical results4. 5 to the short crack regime in the present study

(Eqn. 2), the modification introduced by Thouless was implicitly assumed. This approach gives

consistent solutions for the steady-state G and the corresponding cracking stress in both the short

and long crack regime as a --+ ao. Furthermore, it gives a value of ao which differs from that

given in Ref. 4 by the factor Em( 1-f)/E.
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FIGURE CAPTIONS

Fig. 1. Mechanical behavior of a unidirectional CAS/SiC composite: a) tensile stress-strain
response, b) degradation in tangent modulus with applied stress, c) evolution of crack

density and d) multiple matrix cracks following loading to failure.

Fig. 2. Trends in matrix cracking stress with crack length. (Numerical results adapted from

Ref. 5)

Fig. 3. Strain energy release rate for interacting matrix cracks.

Fig. 4. Flaw distributions used for computer simulations: a) m = 4, b) m = 10.

Fig. 5. Histograms of crack spacing for various levels of applied stress (m 4, X = 100).

Fig. 6. Variations in the average crack density with stress for various values of X.: a) m = 4,

b) m = 10.

Fig. 7. Computed tensile stress-strain curves

a) A comparison of the results obtained from the two methods described in the text.

The solid line shows prediction of Eqn. 7, assuming a periodic arrangement of

cracks. The symbols correspond to calculations in which the fiber strain
distribution was integrated along the entire length of the composite.

b) Effects of the reference length parameter X (m = 4).

Fig. 8. Effects of the reference length parameter X. on the degradation in the tangent modulus.
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ABSTRACT

Delamination cracks in composites may interact with misaligned or inclined

fibers. Such interactions often lead to fiber bridging, which causes the nominal

delamination resistance to increase as the crack extends. Substantial specimen geometry

effects are also involved. An experimental investigation of the role of fiber bridging has

been conducted for three different composites. The results are compared with fiber

bridging models based on a softening traction law, leading to schemes for predicting

trends in delamination resistance with specimen geometry and crack length.

Implications for utilizing this effect to suppress the growth of delaminations are

presented.
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1. INTRODUCTION

Laminated brittle matrix composites reinforced with continuous fibers are prone

to delamination cracking upon monotonic and fatigue loading.1-6 The susceptibility to

this mode of damage is the direct result of the extreme anisotropy in fracture resistance

parallel and nominal to the fiber orientation. Delamination cra4&kir; does not normally

constitute an unstable failure mode for laminated composites. Nevertheless, such

damage has several detrimental influences on the structural utility of the composite.

The shear moduli and off-axis tensile moduli can be substantially reduced, leading to

unacceptable structural deformations. Moreover, the compressive and shear strengths

may be severely degraded. Approaches that suppress delamination cracking are thus of

substantial concern for the structural application of these materials. Delamination

cracking has been observed and discussed in both polymeric and ceramic matrix

composites.1"6 The most comprehensive assessments have been made for polymeric

systems.1 ,2

Delamination cracking studies on polymeric systems have unequivocally

identified the matrix fracture resistance as the dominant variable, leading to major

research efforts on the use of higher toughness polymer matrices, such as PEEK.7 This

research has also provided a repertoire of test specimens capable of exploring

delamination, subject to a range of mode mixities between pure opening (mode I) and

pure shear (mode 11).1 It has generally been ascertained that the delamination resistance

in mode I occurs subject to the lowest fracture resistance. Consequently, mode I tests

address the most serious concerns regarding delamination. The emphasis of the present

article is on the mode I delamination resistance, as measured using a standard double

cantilever beam (DCB) specimen. Studies are conducted on both ceramic and polymer

matrix composites, in order to contrast the relative roles of the matrix and the interfaces.
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A substantive factor involved in the delamination crack growth resistance

concerns the influence of the fibers. In general, delamination cracks have trajectories

dominated by the matrix. However, some interaction with the fibers is inevitable,

because of crack path instabilities and imperfect fiber alignments.6,8,9 These interactions

with fibers have the desirable effect of suppressing delamination.9 However, such

interactions also cause the delamination resistance to depend on specimen geometry,

loading mixity, etc.9,10 The resulting lack of uniqueness complicates the design of

delamination resistant composites. The present study contributes to the development of

a simple procedure that correlates the effects of geometry, loading and delamination

plane.

2. SOME BASIC MECHANICS

2.1 Linear Elastic Behavior

The mode I strain energy release rate for an orthotropic DCB specimen is 1

q = bE-- + • (h/a)]2 ()

where P is the applied load, a is the crack length, h is half the specimen depth, b is the

specimen width, I is the second moment of area of the arms of the DCB specimen:

I = bh3/12

, and p are measures of the elastic anisotropy

X = 2/1
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where E is Young's modulus, with the subscripts 22 and 11 referring to transverse and

longitudinal, respectively, while

p = (IE2 U2U
2G-

where G is the shear modulus and V is Poisson's ratio. The coefficient 4 has been

evaluated numericay as11

S= 0.677 + 0.146(p - 1) - 0.017 8(p - 1)2 + 0.00242(p - 1)3 (2)

For a significant number of test configurations and materials, the effects of shear

deformations near the crack tip are negligible and Eqn. (1) simplifies to the beam theory

solution,

P 2a2

bE11I (3)

In some cases, measurement of the crack length is subject to experimental restrictions.

Then, an alternative expression for G derived in terms of the crack mouth opening

displacement, 4 is more convenient. The beam theory result is

3PS
2ab (4)

which may also be modified to account for crack tip shear deformations. 11
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2.2 Non-Linear Behavior

A major source of non-linearity in the delamination cracking of laminated brittle

matrix composites is governed by interactions between the crack and the fibers.8,9,12 A

general description of these effects can be provided by presuming that the fibers which

interact with the delamination crack exert bridging tractions, p, that depend on the local

crack opening, u.10 Such tractions necessarily lead to resistance curve behavior, as well

as effects of specimen geometry and loading mixity on the apparent fracture resistance,

GR.9, 10 TIhese features can be explicitly addressed by invoking a traction law, p(u).

Consideration of the basic fiber bridging process (Appendix) suggests that a softening

law is most relevant to delamination. The simplest form of such a law is, 10

p = p0 (I - u/u()

where po is the traction at u = 0 and uo refers to the displacement at the end of the fiber

bridging zone. A series of pertinent results has been derived using this law,10 such that

delamination is predicted to occur in accordance with a resistance R having the

following characteristics. The mode I steady-state resistance is10

g. = r. + p.u./2 (6)

where ro is the mode I matrix fracture resistance. The crack length upon attaining

steady-state, ass, is given by,10

a. R (h1bE/12)/91(7)
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Both Gss and a., provide a first order basis for comparing experiment with theory. In

the range 0 < a < a., the resistance is given by,10

22

GI (1/,21 +23t[(/)P (8)

where %• and a 4 are coefficients of order unity and P p 2 h/E1 1 ro. For the case

Fo << .R < Gss, Eqn. (8) reduces to

G 9I~~h = 12(a4 /3 l(a/h) (9)

which vividly demonstrates the strong influence of specimen geometry, h, and of fiber

bridging, p0.

3. EXPERIMENTAL

3.1 Materials

Two ceramic matrix composites were used, each with Nicalon fibers providing

the reinforcement. A lithium alumino silicate (LAS) glass ceramic matrix material was

provided by United rechnologies.13 A calcium alumino silicate (CAS-i) matrix

material was provided by Coming.14 Both composites were manufactured by hot

pressing to obtain the laminate structure. A fiber volume fraction, f - 0.4 was achieved

in both cases. All test specimens were cut from 150 mm x 130 mm plates. Unidirectional

(016) laminates were employed, with a nominal ply thickness, 0.17 mm. In addition, a

few tests were performed on a polymer matrix composite consisting of AS4 carbon

fibers in a Poly(etheretherketone) thermoplastic matrix, comprised of (Ol6) laminates,

with a nominal ply thickness 0.125 mm.
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3.2 Test Procedure

DCB specimens having dimensions 55 x 3 x 2.8 mm* were precracked at one end

by cutting an initial notch with a wafering saw. The load was transferred to the

specimen using hinges to avert extraneous bending moments. The load line

displacement was monitored using a capacitance transducer. The tests were performed

in displacement control. In all cases, the crack length was measured in situ using a

travelling microscope. In the majority of tests, the propagation of (interlaminar) cracks

between the original lamination layers was investigated. A few tests were also

performed in which the crack extended in a (intralaminar) plane perpendicular to the

laminate plies.

4. RESULTS

4.1 Ceramic Matrix Composites

A typical load/displacement plot for a DCB test on a ceramic matrix composite is

reproduced in Fig. 1. In contrast to the assumptions of elastic beam theory, the

load/displacement curve is significantly non-linear prior to first crack propagation.

Unloading, after some crack propagation, reveals permanent deformation of the

specimen. In addition, there is evidence of hysteresis in the loading/unloading

behavior. Inspection of the crack reveals the presence of a few intact fibers bridging the

crack over a substantial portion of its length (Fig. 2a, b, Fig. 3). This bridging behavior is

probably responsible for the nonlinearity of the load/displacement curves. Insight can

be gained by evaluating the apparent critical strain energy release rate using Eqns. (1)

a The limited quantity of these materials necessitated the use of small specimens.
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and (4) (Fig. 4). The values obtained from the displacements using Eqn. (4) are lower,

because of the effect of bridging fibers. The fracture resistance of the CAS matrix

material is characterized by a steep rise for - 10 mm of crack growth, followed by a

steady-state atGss = 250 jm-2, with a fracture energy at crack growth initiation,

ro = 20 Jm-2, comparable to that obtained from mixed-mode tests on crossply

laminates of glass LAS composites. 3 Observations of crack wake bridging suggest that

the fibers remain intact in the region of rising fractuie energy, while steady-state

involves a bridging zone of constant length, with the bridging fibers having the

characteristics sketched in Fig. 3.

A much greater rise of the apparent fracture resistance is observed for the LAS

matrix material. The difference is attributed to variations in the fiber packing and the

associated fiber misalignment, as elaborated below. To further examine the effect of

fiber misalignment, CAS composites were loaded such that the cracks grew on

intralaminar planes (Fig. 4). The marked increase in the resistance compared with that

for interlaminar delamination confirms the importance of fiber alignment and

placement relative to the crack plane.

To address effects of specimen geometry (since only sixteen-ply laminates were

available), the DCB specimens were modified by bonding alumina layers to the top and

bottom faces. The energy release rate was then evaluated from Eqn. (1), based on the

second moment of area for the stiffened beam. The resistance determined for specimens

of various flexural stiffnesses (Fig. 5) indicates that the steady-state resistance remains

invariant, but the crack extension required to reach steady-state increases markedly

with increase in the specimen stiffness. In the specimen having the highest stiffness, it

was noted that initial crack pop-in to a length of - 8 mm occurred without interaction

with the fibers. Consequently, the rising resistance only developed at lengths in excess

of the pop-in length.
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The crack opening profile was examined for a CAS specimen with an

interlaminar crack. The specimen was wedged open at the crack mouth and the

measurements taken using a scanning electron microscope. The measured profile

(Fig. 6) is compared with that calculated using the assumptions of beam theory in

conjunction with the following boundary conditions: zero opening and zero slope at the

crack tip and a known opening displacement at the mouth. The correlation suggests that

the bridging effect is only significant within - 10 mm of the crack tip.

4.2 Carbon Fiber-Peek Composite

Unidirectional carbons fiber/PEEK laminates with an overall thickness of 2.4 mm

were used. The DCB specimen width was 6 mm. The resistance was calculated using

Eqn. (1), accounting for the anisotropy and finite geometry of the specimens. A

significant increase in resistance occurs with crack advance (Fig. 7).

5. ROLE OF FIBER BRIDGING

A comparison between experiment and theory, leading to an understanding of

the resistance characteristics, can be conducted in accordance with the following steps.

i) The steady-state bridging zone length ass is obtained from the fracture resistance data

(Figs. 3, 6) based on the crack length at which steady-state commences. Consistency is

addressed by comparing this value with ass predicted by the bridging model (Eqn. 7).

ii) The opening at the end of the bridging zone, uo, at a distance ass from the crack tip is

calculated from beam theory, assuming that the bridging fibers have an insignificant

effect on the beam profile (cf. Fig. 6). iii) With the premise that uo is an explicit property

of the fiber bridging process, the peak bridging traction po is evaluated by equating the

measured steady-state toughness to that predicted by Eqn. (6). iv) Based on this p., the
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full resistance curve is calculated using Eqn. (8) and compared with experiment. The

parameterz obtained for the three composites, using this approach, are summarized in

Table 1. Based on these parameters, a comparison is made (Fig. 4) between the measured

resistance curves and the curves predicted using Eqn. (8). The correspondence is

satisfactory and furthermore, the absolute magnitudes, as well as the ratios of po among

the materials appear reasonable, when compared with the simple model described in

the Appendix.

Specimen geometry pffects can be rationalized by using the fiber bridging

parameters (Table 1) and predicting the change in resistance with the stiffness of the

arms of the DCB specimen. For this purpose, the second moment of area of the stiffened

arms is used to determine that modified arm thickness •" (as if the arms were made

entirely of the composite material). This value is used in Eqn. (8) to predict the

resistance. The predicted resistances are plotted on Fig. 8. For this purpose, the

resistance for the highest stiffness specimen was only computed for crack length beyond

pop-in, where fiber interactions were observed to commence. With this proviso, it is

apparent that there is acceptable agreement with the experimental results.

6. CONCLUDING REMARKS

Experiments and models indicate that interlaminar fracture resistances obtained

from DCB tests are sensitive to fiber bridging. Comparatively weak pull-out tractions

result in resistances many times the fracture resistance for crack growth initiation. The

shape of the resistance curve is influenced by the stiffness of the arms of the specimen

relative to the bridging forces. This geometrical dependence leads to an overestimate of

the resistance when bridging effects are not explicitly included in the analysis of the

data.
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Both LAS and CAS ceramic matrix composites exhibit an enhancement in

resistance between 10 and 20 times that of the matrix material. Misaligned fibers

bridging the crack account for this behavior. Should such fiber misalignment be

eliminated, the fracture resistance would be limited to the initiation value of only

20 Jm-2. Conversely, if misalignment could be guaranteed, or if through-thickness

reinforcements were introduced, delamination could be largely avoided. A similar

behavior obtains for a carbon fiber reinforced PEEK composite. In this case, the greater

matrix toughness alleviates much of the concern regarding the role of fiber bridging.

However, values for the delamination resistance cited in the literature are subject to

error, when no allowance has been made for bridging fibers.
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APPENDIX

Model for Bridging Functions in Mode I Delamination

From SEM observations (Fig. 2a-b), the following model appears to provide a

reasonable description of ligament bridging. Following the idealization shown in Fig. 3,

the bridging ligaments are considered to be short beams of retangular section, capable

of deforming in shear and bending. The ligaments peel away from the crack faces,

overcoming a fracture resistance, F1i. By symmetry, the curvature and the bending

moment at the center of the beam is zero. The problem can, therefore, be simplified as

consisting of two cantilever beams joined at the center, with dimensions shown in

Fig. Al.

From Timoshenko and Goodier,17 the end displacement, u/2, of the beam is

given by

u Pi 2  Pt2t
2 3EI 21G (Al)

where P is the load, E is Young's modulus, G the shear modulus, I the beam length, 2t

the thickness and I the second moment of area. The compliance, C, is:

C - u
2P

3E0 2IG WA)

The strain energy release rate, G, is related to the compliance by
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(A3)

-W (A4)

where W is the beam width. For stable crack growth (G = Fi), the cantilever length I.

may be obtained from Eqn. (A4) as

t - 2 -E%
P2  21G) (A5)

Substituting Eqn. (A5) into Eqn. (Al) gives the displacement relationship

u = . P{ 21G IG p2 E }{( 11> (A6)

The predicted traction law obtained using the parameters for CAS given in

Table IH (Fig. A2) reveals softening, although not the simple linear softening assumed by

Suo et al.10 For comparison, the linear softening behavior that fits the experimental

resistance curve data for CAS, obtained by assuming 80 discrete ligaments per mm2 of

crack, is superposed on Fig. A2. The general level of the traction is consistent with the

simple model. No attempt has been made to incorporate either frictional sliding or

ligament degradation, both of which are observed experimentally.
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TABLE I

Fiber Bridging Parameters For Interlaminar Cracks

Matrix ass(mm)° Uo(pm) Po(MPa)

LAS 22 800 1.2

CAS 10 140 4

PEEK 4 90 11

*For a 16-ply laminate
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TABLE II

Parameters Used For Ligament Model

t (3 fiber radii) 21 jIm

w (6 fiber radii) 42 11m

E (local f = 0.5) 150 GPa

Pi 12 or 25 Jm"2
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FIGURE CAPTIONS

Fig. 1. Load, displacement characteristics of a DCB interlaminar fracture test.

Fig. 2. a) Bridging ligaments near the crack tip in a CAS/Nicalon DCB specimen.

b) Bridging ligaments 6 mm behind the crack tip.

Fig. 3. A schematic of the bridging process.

Fig. 4. a) Comparison of nominal interlaminar mode I fracture resistance for LAS
matrix composite determined using crack length and displacement

measurements.

b) Nominal mode I fracture resistance for CAS on interlaminar and
intralaminar planes, and for LAS on interlaminar planes. Also shown are
the predicted curves.

Fig. 5. Nominal mode I fracture resistances for CAS specimens stiffened by bonding

A1203 plates.

Fig. 6. Crack opening displacements measured as a function of distance from the

crack tip. Also plotted is the elastic beam theory prediction.

Fig. 7. Nominal mode I, interlaminar fracture resistance data for unidirectional

carbon fiber-PEEK DCB specimens.

Fig. 8. A comparison of the fracture resistance data from Fig. 5 with calculated curves

(Eqn. 8).

Fig. Al. A cantilever beam used to model the elastic deformation of the bridging

ligament.

Fig. A2. The traction, crack opening behavior predicted by the ligament model for two
values of fracture energy, ri. Also shown is the linear softening law used to

correlate the resistance curve data.
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ABSTRACT

Multilayer systems comprised of brittle materials can exhibit substantia'"

different behaviors under flexural and tensile loadings. The present article addresses the

origins of such differences, with emphasis on the modeling of theflexural stress-strain

response. Systems with both a deterministic tensile strength and a distribution in

strengths (characterized by Weibull statistics) are considered. The model predictions

show that both the ultimate strength and strain-to-failure in flexure exceed the

corresponding values in uniaxial tension. In addition, systems comprised of alternating

layers of two different materials are examined, and disparities in the flexural and tensile

behaviors addressed.
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1. INTRODUCTION

There has recently been considerable interest in the mechanical behavior of a wide

range of multilayer systems. Some of these systems are man-made,1 ,2 whereas others

occur in nature (e.g., shells of mollusks3,4). The key feature that imparts good

mechanical properties in these materials is the presence of crack-deflecting interfaces

between layers: cracks that form in one layer are deflected along the interfaces with

adjacent layers, preventing catastrophic failure.

Characterization of the mechanical properties of multilayer systems usually

involves two types of tests: flexure and uniaxial tension. Flexure tests are frequently

chosen because of limitations of small specimen volumes, and ease of both sample

preparation and testing procedure. In selecting these tests, it is implicitly assumed that

the measurements are characteristic of the tensile properties, particularly when all the

layers in the system are brittle. However, it has become clear that layered materials

exhibit rather different characteristics in the two tests. In particular, the nominal strain

to failure measured in flexure can be substantially higher than that measured in uniaxial

tension.l,2 The purpose of the present article is to address the origins of such disparities.

It should be emphasized that neither test is necessarily "better" than the other in

terms of characterizing mechanical properties: they are simply different from one

another. The uniaxial tensile test simulates loading that leads to in-plane tensile stresses,

whereas the flexure test simulates loading that involves stress gradients across the

layers. Such gradients can arise through either mechanical loading, e.g., a plate, simply

supported at discrete points on one side, with a uniformly distributed load on the other;

or thermal loading, e.g., a plate with a temperature gradient across the plate.

Consequently, it is necessary to understard the mechanics of failure in both cases.

Multilayer systems comprised of brittle layers can exhibit three types of behavior

under flexural loading. The behavior is dictated by the properties of the interfaces
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between the layers as well as the loading configuration. (i) When the layers are strongly

bonded, the system behaves essentially as a monolithic ceramic: a crack in one layer can

propagate readily into adjacent layers, with no beneficial effect of the interface. In this

case, the flexural stress-strain response is linear elastic up to fracture (as it is in uniaxial

tension). (ii) The second type of behavior involves sliding of the layers past one another

prior to cracking. This occurs when the sliding resistance of the interface is low. The

stress-strain response of such systems is characterized by a linear region with a low

modulus, given approximately by E/N where E is the modulus of the ceramic and N is

the number of layers. In principle, the sliding can be prevented by increasing the aspect

ratio of the beam such that the in-plane shear stresses are minimized. (iii) The third,

and most desirable, type of behavior occurs when the interface is sufficiently strong to

prevent sliding, but its fracture resistance is sufficiently small to allow cracks to be

deflected along the interfaces. In order to get crack deflection, the interface toughness,

ri, must be less than -25% of the toughness of the ceramic, rcl0 . The flexural

stress-strain response of these systems is characterized by a linear elastic region with a

modulus equivalent to that of the monolithic ceran'ic, followed by a step-like reduction

in stress as the layers crack1,6. Systems that exhibit the latter characteristics are the

focus of the present study.

This paper considers, theoretically, the flexural stress-strain response of three types

of brittle, multilayer systems, all containing crack deflecting interfaces. In the first, all

the layers are assumed to be the same and to have a deterministic tensile strength. This

simple case demonstrates that the nominal failure strain in flexure is larger than that in

tension. The flexural strength, however, remains the same as the tensile strength. In the

second system, the strengths of the individual layers are assumed to follow a two-

parameter Weibull distribution. In this case, both the strength and the strain to failure in

flexure exceed the corresponding values for uniaxial tension. The third system is

comprised of alternating layers of two different materials, both of which have a
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deterministic tensile strength. This configuration is chosen to provide insight into the

behavior of hybrid composites comprised of monolithic ceramics and fiber-reinforced

composite layers.2,5 A notable feature that emerges from these calculations is the

difference in the critical volume fraction of reinforcement needed for strength

enhancement: the critical value being lower in flexure than in tension. Comparisons

between theoretical predictions and experimental measurements will be presented

elsewhere.6

2. SYSTEMS WITH DETERMINISTIC STRENGTH

The flexural stress-strain response of a weakly-bonded multilayer material with a

deterministic tensile strength at is evaluated following Euler-Bernoulli beam theory.7

The compressive strength of the material is assumed to be very much larger than the

tensile strength and the material is taken to be linear elastic up to fracture. These

characteristics are representative of many brittle solids, including ceramics. The loading

is assumed to be pure bending. The results are presented in terms of nominal stresses

and strains, calculated on the basis of the overall beam dimensions.

Upon initial loading, the system behaves like a monolithic solid in the sense that

both the stress and the strain distributions across the beam are linear. The maximum

values of tensile stress and tensile strain are thus given by7

" = 6M/b(Not)2  (1)

and

c = a/E = 6M/b(Not)2 E (2)
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where M is the applied bending moment, No is the number of layers, t is the thickness

of each layer and b is the beam width. When a reaches Ot, the outermost layer (on the

tensile side) breaks: the remaining layers are assumed to stay intact since the crack

deflects along the interface with the second layer. The corresponding values of nominal

stress and strain are simply

01 = 0 t (3)

and

El = ot/E - Et (4)

For the purpose of calculating the subsequent stress-strain response, it is assumed

that the stress everywhere in the first layer is reduced to zero following cracking. In

essence, the outer layer is removed from the composite, leaving (No - 1) intact layers.

As a result, the stress and strain distributions can be assumed to remain linear, with a

shift in the neutral axis by a distance of t/2. The reduction in plate stiffness following

the initial cracking event leads to a drop in the nominal stress to the value

=a(N 0 - (5)

In order to break the next layer, the plate must be loaded further until, once again, the

stress in that layer reaches at. The loading conditions required for this event are

described by
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and

C.2 E t NO-I
( No (7)

Following the second cracking event, the load drops again, and the stress for further

cracking calculated assuming that both cracked layers do not support any stress. Using

this approach, the nominal stress, (ci, and the nominal strain, E i, for cracking the ith

layer are

O__i = Ni2

a t No (8)

and

E_ = (NJ (9)

where Ni is the number of intact layers. Similarly, the nominal stress after failure of the

ith layer is

S= tN2N (10)
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The preceding results can be combined to describe two relevant curves: one is the

locus of nominal stress and nominal strain values at each cracking event; the other is the

locus of the corresponding values following each cracking event. The stress-strain curves

oscillate between these loci in a saw-tooth fashion until all the layers have broken, as

illustrated in Fig. 1. For comparison, the behavior corresponding to uniaxial tensile

loading is also shown. The former locus is obtained by combining Eqns. (8) and (9),

resulting in

Oi C = Ei -2

Ot Et•) (11)

Note that this relationship does not depend on the number of layers. The latter locus is

obtained from Eqns. (9) and (10), resulting in

at NL (12)

In this case, the stress increases with increasing number of layers, No, as shown in

Fig. 2. As No approaches co, the lower curve converges with the upper curve and the

stress-strain curve becomes a smooth, monotonically decreasing function beyond the

stress maximum. It should be noted that the flexural strength of these systems (defined

by the maximum point in the nominal stress/nominal strain curve) is identical to the

tensile strength. However, the nominal strain-to-failure can be substantially higher in

flexure: by a factor of - 3-4 for large values of No.
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3. ROLE OF FRACTURE STATISTICS

Many brittle materials, including ceramics, exhibit a distribution in strengths. This

distribution can generally be described by the empirical Weibull function

e (00 (13)

where P is the cumulative probability of failure at stresses up to 0, V is the sample

volume, Vo and (7o are the reference values of volume and stress, and m is the Weibull

modulus. The approach developed in the previous section is used here to describe the

flexural response of multilayer systems in which the strength of the layers follows such

a distribution. For convenience, No is assumed to be large, allowing the stress gradients

across individual layers to be neglected. To provide a basis for comparison, the results

for uniaxial tensile loading are presented first. The latter results are not new: they are

equivalent to those obtained in the theory of fiber bundle failure.

During uniaxial tensile loading, the stress in each intact layer is simply EE , where S

is the remote tensile strain. The stress in the broken layers is assumed to be zero, as in

the preceding section. Consequently, the variation in nominal stress with nominal strain

can be written as

a _ E(1- P) _(CE' [-V( -E'm

0o - o"-o ) LV o0 0 (14)

Typical tensile stress-strain curves, presented in the normalized form o/oD vs C E/0 0 ,

for several values of m are shown in Fig. 3(a). The tensile strength, kT, is obtained by

setting
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d(G/ao) 0"- 0,
d(SE/o 0 ) (15)

whereupon

UT
GO (meV/Vo)n (16)

Trends in (T/Go with m for V/Vo = 1 are presented in Fig. 4.

The corresponding results for flexural loading are more complicated and, as shown

below, require numerical integration. The assumptions used in deriving the equations

here are essentially the same as those outlined in Section 2, with one notable exception.

Since the strength of the layers is assumed to follow a Weibull distribution, cracking

does not necessarily occur sequentially through the layers in order of their positions.

Consequently, the stress distribution across the beam does not remain linear, though the

strain distribution does.

Evaluation of the nominal stress-strain behavior of such systems involves two

steps. In the first, the applied bending moment, M, is equated to the moment induced

by the stresses within the beam. This condition can be written as

M = b(NQt) 2 Y EtY()E) -(-c)de

(El -cc)2 (17)

where Ec and Et are the maximum values of compressive and tensile strains,

respectively. Furthermore, assuming the stress-strain relation O(e) to be linear in the
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compressive region (C < 0) and to follow Eqn. (14) in the tensile region (e > 0) allows

Eqn. (17) to be re-written in the non-dimensional form

_ 6 [2 e(e - ec)de + fe(e -eexp de,
00 (et -ec) e e VO i (18)

where e is a normalized strain (F E/a 0 ), and the subscripts c and t represent

compression and tension, respectively. In the second step, the sum of the forces acting

parallel to the plate is set equal to zero, enforcing static equilibrium. This condition can

be expressed as

fi ede+ e, e" -exp[-i(o-o)e' de = 
(

ec f O 1(19)

Combining Eqns. (18) and (19) leads to the final result

•-• =c)2 {3fo e .ex -•oe de-e3

Oo (et -ec {{(20)

where

ec= - 2t 'eexp[- (j)em de (fo VO j(21)

The integrals in these equations have been solved using a numerical method. The

resultant stress-strain curves for V/Vo = 1 and several values of m are plotted in

Fig. 3(b). Comparison with the tensile curves indicates that the ultimate flexural
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strength oF, consistently exceeds the ultimate tensile strength, OT,: the difference being

largest for low values of m (Fig. 4). The influence of m on the strength ratio (flexural to

tensile) is plotted in Fig. 5.

It is of interest to note that the trend in Fig. 5 is similar to that obtained when

comparing the mean flexural strength of a monolithic ceramic with the corresponding

mean tensile strength. In the latter case, the strength ratio is given by8

IFE. = [C(m+,)])/m
[T (22)

where c is a numerical coefficient. When the specimen volumes are equivalent, c = 2.

The trend predicted by Eqn. (22) is plotted on Fig. 5 as a dashed line. It appears to scale

with the results for multilayer systems over the range of values of m considered here,

suggesting that the present results can be described empirically by a function with a

form similar to that of Eqn. (22). Indeed, when c is taken to be 0.75, Eqn. (22) provides a

good approximation to the exact results, with an error <0.8%, over the range 3 <_ m •20.

This comparison is presented in Fig. 5. It is also of interest to note that the

strain-to-failure of the multilayer systems in flexural loading is substantially higher than

that for tension for the entire range of values of m.

The origin of the disparity in the ultimate strengths in flexural and tensile loading

can be understood by examining the stress and strain distributions across a flexural

beam at various stages of loading. One such example, for m = 5, is presented in Fig. 6.

Figure 6(a) shows the nominal stress-strain response and Figs. 6(b) and (c) show the

corresponding strain and stress distributions at three load levels, represented by points

A, B and C. Prior to extensive cracking (A), both the strain and stress distributions

remain essentially linear and symmetric about the beam center, as expected for an

elastic beam. When extensive cracking occurs, the strain distribution remains linear,

7F:MS27(February 8. 1993)3:01 PM/mef 12



though the neutral axis shifts toward the compressive face. At the load maximum

(point B in Fig. 6(a) ), the stress distribution on the tensile side becomes highly non-

linear: the shape of this distribution is identical to the tensile stress-strain curve shown in

Fig. 3(a) (though with a part of the tail truncated). This similarity arises because the

strain distribution is assumed to vary linearly across the beam. The maximum local

tensile stress in the plate is thus equivalent to the ultimate tensile strength (0.59 CFO for

the present case), whereas the maximum compressive stress reaches significantly higher

levels: 0.85 0o at the load maximum. Consequently, the maximum nominal stress

supported by the beam is higher in flexure (0.80 0o) than in tension (0.59 a0 ). In essence,

this difference can be attributed to the process of stress re-distribution following

cracking in the flexure specimen, coupled with the high compressive strength of the

constituent layers.

To provide insight into the relative magnitudes of these effects (one due to the

stress re-distribution and the other to the tension-compression strength differential), it is

useful to consider a hypothetical case where the compressive stress-strain response is the

same as that for tension (Eqn. 14). This approach allows determination of the iatio of

flexural to tensile strength when the only effect is the geometric one associated with

stress re-distribution. (Clearly, this is an academic exercise since there are no real

materials that exhibit such behavior.) The results of these calculations are plotted as the

dotted line in Fig. 5. Apparently, the strength ratio (flexure/tension) is due largely to

the stress re-distribution effect, though there is a noticeable contribution associated with

the tension-compression strength differential.

4. BIMATERIAL SYSTEMS

The preceding analysis for single-phase systems is extended here to cases in which

the beams consist of alternating layers of different phases: one being the 'matrix' phase
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(material 1) and the other the 'reinforcing' phase (material 2). The motivation for this

analysis stems from recent experimental studies on hybrid composites comprised of

alternating layers of monolithic ceramics and fiber-reinforced sheets. The present

analysis is limited to symmetric lay-ups in which the exterior layers are the 'matrix'

phase. Each of the two phases is assumed to be linear elastic and to have a deterministic

tensile strength. For simplicity, differences in elastic moduli between the two materials

are neglected. (The elastic mismatch is accounted for in a companion paper 6.) Once

again, cracks formed in one layer are assumed to be deflected along the interfaces with

adjacent layers, allowing the layers to behave independently of one another.

Furthermore, the tensile strength d 2 of the reinforcing layers is assumed to be larger

than the tensile strength d1 of the matrix layers. The behavior of plates comprised of an

infinite number of layers is considered first, since a dosed form expression for the

stress-strain response can be readily derived.

The tensile stress-strain relationship of such bimaterial beams is a discontinuous

linear function of strain in three intervals of strain. This relationship can be expressed in

the non-dimensional form

a/f E = 1 E/f, !5 1 (23a)

o/cE = f (23b)

c/E = 0 r/E1 > T2/El (23c)

where f is the volume fraction of the reinforcing phase, and E1 and E 2 are the failure

strains of materials 1 and 2, respectively. Due to the discontinuous nature of the tensile

response, the nominal stress in flexure is also a discontinuous function of strain. The

flexural response must be determined separately for each of the three intervals and then
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combined in a piece-wise fashion to determine the overall response. In all cases, the

flexural response is determined from static equilibrium (by setting the average

longitudinal stress equal to zero) and setting the resultant bending moment equal to the

applied moment.

The first interval is simply the trivial case where the body is linear elastic,

whereupon the stress-strain relation becomes

a _ E <

a 1  (1 T1 (24)

where St is the maximum tensile strain in the beam.

For the second interval, the nominal stress-strain relation is

1-L)'+ 2(p-3 2_)
<, =L t-1) t•-I j 1< F._t < Eg2.

(25)

where ec is the maximum compressive strain and is related to the nominal strain F- by

2f= + [f2 +2f(2(c2 -1 +1

(1-f) (26)

The expression for the third interval is
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cr~ Et T
(27)

where the maximum compressive strain is now given by

SE(28)

It can readily be shown that, when f = 0, the results for intervals two and three

(Eqns. 25 and 27) are identical, and agree with the results derived for single phase

multilayered materials (Eqn. 11).

Similar calculations have also been carried out for plates containing finite numbers

of layers. In this case, no simple dosed form expression for the flexural stress-strain

response can be obtained. The approach adopted here was to increase the nominal

strain in small increments and, at each interval, evaluate the magnitude of the stresses

in both phases. When the stresses reached the corresponding strengths (either al or 62),

then those layers were discounted from subsequent calculations by simply setting their

modulus equal to zero, as before. This procedure was repeated until all the layers had

failed.

The resulting nominal stress-strain curves for the case where d2/d 1 = 3 and

f = 0.1 are plotted in Fig. 7(a). In this case, the ultimate strengths in tension and flexure

are governed by the strength of the matrix phase (material 1), though the nominal

flexural stress at strains beyond the load maximum is larger than that in tension. In

general, the stress increases as the number of layers increases. It is also seen that the
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result for beams containing 20 matrix layers (39 total layers) differ only slightly from the

infinite layer solution.

The corresponding stress-strain curves for f = 0.5 are shown in Fig. 7(b). In this

case, the ultimate strength is substantially larger than the stress required for the onset of

matrix cracking. It is also apparent that the ultimate strength is greater in flexure than in

tension and depends to some extent upon the number of layers.

The effects of reinforcement volume fraction f on the ultimate strengths in tension

and flexure for the case where 32/d1 = 3 are shown in Fig. 8. At low values of f, there

is no strength enhancement due to the presence of the reinforcements: once the matrix

layers fail, the reinforcements are unable to support the additional load and thus the

strength of the composite is dictated by that of the matrix. However, beyond a critical

volume fraction, fco the strength increases with f, reaching a value of 3 when f = I.

A notable feature in Fig. 8 is that the critical volume fraction for flexure is lower

than that for tension. This critical volume fraction can be expressed solely in terms of

the strength ratio, 1/a2. For tensile loading, the relationship is simply9

fc = U1 /U 2  (29)

For flexure, the critical vali-e is found by setting the maximum nominal stress (given by

the intersection of Eqns. (25) and (27)) equal to unity, resulting in

4.2 )2+ 13521 +7+ [8( 2 )3+ 33(•2I+ 22 U2 Y+1
) tol Lj +7 [8() to J

fc= 8[- +1]

LM(t,.9) PM1(30)
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The results of Eqns. (29) and (30) are plotted against the strength ratio a2/di in Fig. 9,

and show that the critical volume fraction in flexure is consistently about half of that

required in tension.

5. CONCLUDING REMARKS

The main goal of this study has been to quantify the basic trends in the fracture

behavior of brittle multilayered systems and address, specifically, the origin of

differences between flexural and tensile properties. A simple theory based on the

bending of beams has been developed to account for the progressive cracking through

such systems and its effects on the nominal stress-strain response. A number of

important features have been identified. Firstly, single phase multilayer beams with

deterministic strengths, while not possessing greater strengths than the individual

layers, do have the ability to withstand flexural load beyond the initial cracking event

under displacement-controlled conditions. When the individual layers possess a

statistical distribution of strengths (as expected for most brittle solids), both the strength

and the failure strain are higher in flexure than in tension. In either case, multilayer

systems are likely to be stronger than monolithic materials of the same dimensions, due

simply to the f-ct that thin layers usually contain smaller flaws and hence possess

greater mean strengths (i.e. the two dimensional analog to fibers). Secondly, further

property improvements can be obtained by introducing reinforcing layers with a high

strength and strain-to-failure (e.g. fiber composite). Such hybrid systems are expected

to provide a high matrix cracking stress (relative to that of conventional unidirectional

CMCs) in combination with a high strain-to-failure. Finally, the critical volume fraction

required to strengthen layered ceramic systems under flexural loading is about one half

the value corresponding to uniaxial tension. This result is important in designing

composites for applications subject to stress gradients across the layers.
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It should be noted the present theory is rather simplistic in the sense that the

interfacial cracks are assumed to propagate to sufficiently long lengths such that the

cracked layers are completely unloaded. In reality, the interfacial cracks are expected to

propagate only a finite length along the beam: the average stress within each cracked

layer could then be substantial. This is expected to increase the ultimate flexural

strength in relation to the present model predictions. A more rigorous model is needed

to incorporate such effects.
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FIGURES

Fig. 1. Comparison of the tensile and flexural stress-strain curves of a system

comprised of 8 brittle layers, each with a deterministic tensile strength, at, The
dashed lines are calculated from Eqns. (11) and (12), and show the bounds on

the flexural stress-strain curve.

Fig. 2. The locus of points bounding the flexural stress-strain response of systems

with finite numbers of layers. The solid curve represents the upper bound, and

the dashed curves represent the lower bounds.

Fig. 3. Influence of the Weibull modulus, m, on (a) the tensile and (b) the flexural
stress-strain response of multilayer systems.

Fig. 4. Trends in the ultimate strength with Weibull modulus for flexural and tensile

loading.

Fig. 5. Influence of Weibull modulus on the ultimate strength ratio

(flexure-to-tension).

Fig. 6. (a) The flexural stress-strain curves for m = 5, and (b) the corresponding

strain and (c) stress distributions at three load levels, indicated by points A, B

and C on the curve in (a).

Fig. 7. Comparisons of the tensile and flexural stress-strain curves for bimaterial

systems: (a) f = 0.1, (b) f = C.5. Note that the tensile curves do not depend on
the number of layers, whereas the flexural curves do.

Fig. 8. Influence of reinforcement volume fracture on (a) the flexural and tensile

ultimate strengths and (b) the strength ratio (flexure/tension).

Fig. 9. Influence of strength ratio d2/O1 on the critical reinforcement volume fractions

for both flexural and tensile loading.
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ABSTRACT

Nicalon fibers are found to provide substantial axial creep strengthening of

CAS at 1200'C. The axial creep is transient in nature, caused by a strength

enhancement of the fibers, attributed to grain growth at elevated temperatures. This,

in turn, results in reduced diffusional creep. The transverse creep properties are

dominated by the matrix, resulting in considerable anistropy. This anisotropy leads

to severe distortion when off-axis loading arises. Residual stresses develop upon

unloading after creep, and cause superficial matrix cracking.
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1. INTRODUCTION

Ceramic matrix composites are expected to have a key role in achieving the

performance goals of the next generation of advanced aircraft. The intrinsic ceramic

properties of high refractoriness, good oxidation resistance and low density have

been motivating the development of these materials. Much of the recent effort has

been expended in overcoming some of the key limitations of ceramic materials,

particularly their notch sensitivity. This work has led to the development of ceramic

matrix composites (CMCs), using fiber reinforcement as a means of controlling

damage and redistributing stresses.1- 3 Critical to the success of this approach is the

presence of a fiber coating that provides a "weak" interface.4,5

While the low temperature mechanical behavior of ceramic matrix

composites is now reasonably well understood, 6-9 much remains to be addressed at

high temperatures, where most of the performance benefit is to be obtained. The

presence of reinforcing fibers can have additional advantages at such temperatures.

In particular, if the fibers are more creep resistant than the matrix, a substantial

creep strengthening should be achieved. 10-12 This is expected to be the case for glass

ceramics reinforced with silicon carbide fibers. However, the actual creep

strengthening will be influenced by several factors. For instance, it is presently

unclear whether the presence of a "weak" interface obviates the strengthening effect

by allowing debonding and relative sliding between fiber and matrix, at prematurely

failed fibers. Furthermore, most currently used fibers are polycrystalline, and rely

upon a fine grain size (< 1 gxm) to achieve high strength. This fine grain size implies

a susceptibility to creep and rupture,13-15 both of which may limit the useful
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temperature of the composite. Composite creep may also be influenced by high

temperature microstructural changes occurring in the fibers,16- 18

Another important factor governing composite behavior is the anisotropy.

Unidirectional fiber reinforcement results in optimum creep strengthening in the

fiber direction, but at the expense of a diminished transverse strength. In practice,

the inferior out-of-plane properties may limit structural integrity. It therefore

becomes imperative to understand this anisotropy in detail, in order to guide

materials development and ensure reliable engineering design.

In this study, the creep behavior of the calcium aluminosilicate (CAS) system,

unidirectionally reinforced with SiC (NicalonOB) fibers, has been investigated.19 In

this material, the presence of a carbon layer at the fiber/matrix interface results in a

strong dependence of mechanical properties on the extent of oxidation. 4

Consequently, in order to allow separation of the influence of mechanical loading

and environment, creep tests are conducted in inert conditions. The responses to

both axial and transverse loads are investigated, as needed to reveal the creep

strengthening provided by the fibers, as well as the anisotropy in material response.

The creep properties are correlated with changes in the microstructure occurring

during the tests.

0 Nicalon@
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2. EXPERIMENTAL PROCEDURES

2.1 Creep Tests

Creep tests were performed with a hydraulic testing machine in argon

(- 0.1 MPa) within a furnace having a 2200'C temperature capability. The

composites were tested in four-point flexure on beams measuring approximately

3 x 3.5 x 45 mm. A device was constructed which directly and continuously

evaluates the (constant) curvature over the inner span by measurement of the

displacement A (Fig. 1). The maximum tensile creep strain rate E is then given

rigorously by20

E = hA/(6A2 + s2) (1)

where h is the beam thickness and s the span. The device allows strain

measurements accurate to within WO.01%, and a resolution of T-0.0005%. Subsequent

numerical treatment of the data then yields the corresponding strain rate behavior.

The stresses that develop in the composite relate to the applied moment

through the longitudinal constitutive properties of the composite. Determining

exact values for the stress during flexural creep is not straightforward. Procedures

used in this study are described in Appendix I.

This test system was also adapted for compressive creep measurements. In

this case, the outer two gauging rods (Fig. 1) contacted the top loading plate and the

central gauging rod, attached to the LVDT, contacted a creep resistant SiC platen

directly under the specimen. Deformation of the specimen was measured from the
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relative displacement of the inner and outer gauging rods, from which the strain

can be determined directly.

2.2 Characterisation Techniques

Specimens for scanning electron microscopy (SEM) were prepared using

standard metallographic techniques. Carbon-coated samples were examined in JEOL

SM 848 SEM in secondary mode. The microscope was equipped with a Tracor

Northern TN 5500 analysis system.

For transmission electron microscopy (TEM) chracterization, samples

prepared by ion milling were examined at 200kV in a JEOL 2000FX TEM equipped

with a LINK eXL high take-off angle energy dispersive spectroscopy system.

Computer simulations and indexing of selected area diffraction (SAD) patterns were

facilitated by the Desktop Microsopist software package (Virtual Labs, Ukiah, CA

95482). TEM of the composite after creep was impeded by crumbling of the matrix

during foil preparation. The following, alternative, procedure was thus used to

obtain samples of fibers. Wafers, approximately 2.5 mm square and 300 gm thick,

were cut using a slow speed diamond wafering blade, with the fiber orientation in

the plane of the wafer. These wafers were then soaked in concentrated hydroflouric

acid for about 3 minutes to remove most of the matrix, leaving the intact fibers

behind. These fibers were then extracted using a tweezers, mounted on a copper grid

and ion milled prior to TEM analysis.
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3. MATERIAL

The composite investigated in the present study is a calcium-alurnino-silicate

(CAS) glass ceramic, unidirectionally reinforced with continuous (Nicalon) silicon

carbide fibers. 19 These composites were produced by passing tows of fibers through a

liquid slurry containing fine particles of the matrix in suspension. The tows were

subsequently dried, stacked unidirectionally, and consolidated by hot-pressing. The

resulting material comprises 16 plies, with an average fiber volume fraction

(f = 0.4), although local variations are evident (Fig. 2). The composite is produced

as a flat plate, with a glass-rich surface layer8 ,19 . During testing, this layer constitutes

the outer surface of the side faces and may protect the composite from attack by

residual oxygen in the test environment.

TEM characterisation revealed that the CAS matrix consists of Anorthite with

a grain size < 1 pam. Substantial twinning (- 20 nm width) was evident throughout

the matrix in the as-received state. Very fine (= 20 nm) precipitates, probably

zirconia, were detected within the CAS grains. The fiber/matrix interface consisted

of a 300A thick carbon layer (Fig. 3a), identified by means of scanning EELS

micrographs, recorded with the characteristic energy loss for carbon (Fig. 3b). SEM

analysis revealed the presence of occasional brittle matrix cracks, perpendicular to

the fiber/matrix interface. Electron diffraction analysis of the fibers revealed a

characteristic ring pattern, representative of 1-SiC with a very fine grain size. Dark-

field imaging established a grain size, d = 1-3 nm.
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4. RESULTS

4.1 Creep Rates

Flexural creep experiments were conducted at 1200'C, between 50 to 150 MPa,

with fibers oriented along the length of the sample, in order to obtain the uniaxial

creep rates summarized in Fig. 4. The total (outer fiber) strains during testing were

limited to - 1 %. It is apparent that the strain-rate is fully transient, at all applied

stresses, indicative of continuous creep strengthening (with accumulating strain).

To determine the effect of loading history on the creep rate, two tests were

conducted at the same nominal stress, but with one periodically interrupted, (Fig. 5).

To prevent recovery effects,21 the sample was cooled rapidly during interruption.

The strain was then measured from the beam curvature at room temperaure. The

results demonstrate the history insensitivity of the composite creep.

Transverse compressive creep data obtained at 1200*C are presented in Fig. 6.

In contrast to the axial response, the transverse behavior is characterized by a

minimum, (apparent steady-state), deformation-rate, preceeded by an initial

transient. The steady-state behavior can be characterised by a power-law, with a

power law exponent, m - 2.4. A comparison of the axial and transverse creep-rate at

50 and 75 MPa (Fig. 7), provides direct evidence that creep strengthening is achieved

using Nicalon fibers.

An alternative demonstration of the creep anisotiopy is provided by the

cross-sectional profiles of crept flexural samples (Fig. 8). The ratio X of peak shear

stress between the inner and outer loading points to peak tensile stress in the

midspan is typically low (<0.1)¶, so that in isotropic beams the effect of shear

I X = 2 (L - 1) / h, for elastic or linearly creeping fibers.
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deformation can usually be neglected. However, the relatively poor creep strength of

unidirectional fiber composites in shear results in shear deformations substantially

higher than those caused by bending.

4.2 Observations

Scanning electron microscopy conducted on the crept samples provided

information about microstructural damage upon transverse and axial loading. At

small strains (<1%), there was no apparent matrix damage: The absence of matrix

cracks in axially loaded specimens, at the stress level used in these tests (maximum

of 150 MPa), is consistent with earlier studies conducted at room temperature. 8

However, cracks were found in the glass-ceramic coating, on those sides that had

been subject to compression during creep (Fig. 9). The occurrence of such cracks

implies the presence of a residual tension after cooling and unloading (Appendix U).

Cracking was more prevalent at higher loads.

At larger strains (1-5%) transverse damage was apparent in the matrix,

manifest as voids that emanate from interface separations, at fiber segments

perpendicular to the loading axis (Fig. 10). Additional damage was evident at the

contact points between neighboring fibers, often associated with fiber fractures. At

even larger deformations (;.5%) interface voids and cracks coalesced on a plane

between the centers of neighboring fibers. This damage concentrated along well

defined bands. Failure typically occurred along the principal shear stress plane.

TEM revealed significant microstructural changes in the fibers (Fig. 11). A

well-defined outer shell formed within which substantial grain growth had

occurred (d = 10 - 15 nm) and an inner core in which the grain size remained

unaltered (d = 1 - 3 nm), (Fig. 12), consistent with other studies.18, The extent of the
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large grained regions increased with time at temperature. These regions were

associate0 with enhanced levels of Fe, which may be a grain growth promoter 22,

while similar observations in unincorporated fibers have suggested the non-

stoichiometric nature of the fiber to be responsible. 18 More precise determinations of

the kinetics of grain growth and shell evolution are in progress.

5. DISCUSSION

Information about the creep properties of the matrix can be obtained from the

data obtained in transverse compression (Fig. 6). In the steady-state range the power

law for the matrix should be the same as that for the composite 23,24(m = 2.4), in the

absence of significant matrix damage. Furthermore, the reference stresses should be

related by 23 ,24

amo = J3(f,m)aco (2)

where omo refers to the matrix and aco to the composite: 5 is a coeffecient that has

been calculated for perfectly bonded interfaces23,24 , with f being the fiber volume

fraction. For the present composite (with m = 2.4 and f = 0.•) the calculations give

P = 0.7. Consequently, the data of Fig. 6 can be related to the matrix creep properties

by means of a reference stress conversion, (given by Eq. 2 with P = 0.7), obtaining

amo = 0.7 MPa and tmo = 4.0x10"11 s-1. This conversion is strictly applicable only in

steady-state and at small strains, prior to matrix damage.

The axial data are dominated by the fibers (Fig. 7). The lack of significant fiber

fracture at small strains suggests that a 'rule-of mixtures' law may be used to
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interpret these data. The following procedure is used for this purpose. First, the

matrix creep data is obtained from transverse compression, as described above. A

beam analysis then yields the fraction of the moment borne by the fibers

(Appendix I). This procedure reveals that, for t > 5 h, essentially all of the creep

strength is associated with the fibers. Furthermore, the transient nature of the creep

arises because of microstructural changes within the fibers (Figs. 11,12). The most

iml ortant of these appears to be grain growth, which is expected to be time

dependent. Consequently, by using time as an independant variable (rather than

strain), it is found that the axial creep data can be uniquely correlated (Fig. 13). For

t > 1 h, the associated constitutive law closely approaches the form

t = / T(O/I co)n(tIT)a (3)

with n = 1,1 = 1§, T = 5.5 x 10-6 s and a = -0.9 (aco = 1 MPa, tco=1/s). Finally, the

2xtent and magnitude of the grain growth is found to be consistent with the

observed level of creep strengthening (Appendix IID. This interpretation is also

consistent with a stress exponent, n=l, characteristic of diffusional creep.14

The cracking of the coating on the compressive side of the flexural specimens

after unloading is associated with the development of residual tensile stresses

(Appendix II). Such cracking may be important in causing exposure of the fibers to

environmental attack. The peak value of the residual stress is expected to be

proportional to the magnitude of the applied stress during creep (Appendix ID),

consistent with the greater tendency for such cracking at larger stresses, as well as

being dependant on the creep properties and volume fraction of fibers (see Fig. BI)

§ The fiber constitutive law is obtained by setting Tj = f.
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For the present material, since the fibers carry most of the load during creep, the

residual stresses approach = 0.7aY, where a. is the elastic stress. Cracking of the

coating under these levels of residual tension is consistent with measurements

made in other studies.8

6. CONCLUDING REMARKS

The present study has demonstrated the beneficial effect of fibers on the

longitudinal creep behavior of calcium aluminosilicate (CAS) glass ceramics. Time-

dependent microstructural changeb in the fibers have been shown to result in long-

term creep hardening of the composite. However, the transverse creep-rates are

large and can cause extensive distortion with off-axis loadings. In addition, it has

been demonstrated that residual stresses resulting from non-linear creep can

damage the composite upon cooling and may degrade its subsequent structural

integrity.
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APPENDIX I

Stress Redistribution in a Creeping Beam

In a beam subject to elastic bending, the maximum tensile and

compressive stresses, Oe, are

Ge = (3/2) {P(L - 1)/bh 2} (Al)

where L and I are the length of the outer span and inner span, respectively, P the

load and b the beam width. When the entire body is subject to power law

(steady-state) creep, with the strain-rate, t, characterized by,

t = j (y/oa)n (A2)

where 0o is a reference stress, t a reference strain-rate and n the power law
A

exponent, the maximum stress a in the flexural specimen is

d3/Ge = (2n+ 1)/3n. W)

The corresponding stress distribution is 2 5

o(y) _ (2n+12y) 1/n

oy ý 3n Ah) (A4)

where y is the distance from the neutral axis.

CHW.2.,92 14



In creeping composite beams, when the fibers have a higher creep strength

than the matrix, account must be taken of the redistribution in moment from

the matrix to the fibers. To address this phenomenon both matrix and fibers are

assumed to follow power-law creep behavior, with power-law exponents m and

n respectively, and material response is assumed equal in tension and

compression. In the absence of fiber fracture, the strain-rate in the fibers and

matrix are equal. Inserting this strain-rate equality into Eqs. (A2) and (A4), the

following relationship is obtained.

[nf~]n n 2m+l~'~/(2n+1'n
F1 -(1- f [(I n -3m -3n- (A5)

The strain rate ratio, x = [rma'fo / E 1fo 0 ], where the reference stress and strain-rate

subscripts correspond to the matrix and fiber. This equation must be solved

iteratively to obtain the fraction 4 of applied moment carried by the fibers. Inserting

Sinto Eq. (A4) maximum stress in the matrix and fibers during creep is obtained as

Sm (2m +1)(1-•

e 3m )T (-f) (A6)

and

(2m+1,) 4
aC ' 3m )(1-f) (A7)

respectively. The equivalent result for the composite is
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= + (1) 2m +1 10
(Ye 3 -3n 3+ 3 ) (AS)

For CAS/Nicalon, the strain rate ratio, X, is time dependant because of the

creep hardening behaviour of the fibers. Provided most of the load is carried by

the fibers, this time dependance may be obtained from the axial data, and

expressed as

tfo = f ico(P(t/') (A9)

where Cp(t/t) is a function of time (ofo = 1 MPa, n = 1). Values for tfo obtained

from Fig. 13 are used to determine the variation in X throughout the test. For

t > 1 h the time dependance of X can be described by (p(t/,) = (t/)T)a, (Eq. 3). Trends

in ý and (r/Oe during the test can then be computed using data relevant for

CAS/Nicalon: Plots for accumulated test times of 1 - 70 h (corresponding to strain

rate ratios of order 1.6 x 10-10 - 6.5 x 10-9) and f - 0.4 show that, except during the

early stages of creep, most (>90%) of the load is indeed carried by the fibers (Fig.

AI), thus supporting the validity of the assumption made in Eq. A9.
A

Consequently, as aY _ Ge, the elastic formula (Eq. AI) is used to evaluate the stress

presented in the figures.
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APPENDIX II
Residual Stresses

Creep resistant fibers cause the matrix stress levels to approach zero.

Cooling followed elastic unloading causes the matrix stress to change by an

amount Aam, dictated by the relative moduli of the matrix and the fiber:

A(YM = Ore[(1-f)+TLfi (Bf

Conseqently, residual tensile stresses may ocur in those regions of the matrix

initially subjected to compression. The magnitude of the residual stress depends

on the relative creep behavior of fiber and matrix. Typical result are plotted in

Fig. B1.
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APPENDIX III

Creep Properties of Fibers

Fine-grained polycrystalline ceramics often creep in accordance with a

steady-state law, 14

S/ .o = (a / ao)'(( 2 13 / d) (CI)

where Q is the atomic volume, d is the grain size and P3 a coeffecient in the range

2-3 and n is in the range 1-2.

Based on the present microstructural observations (Fig. 11) the fiber is

treated as two concentric cylinders, the outer defined by a grain size df and the

inner by a grain size di. The thickness of the outer cylinder is represented by,

S= t/R, (Fig. 12). The load distribution between the large and fine grained regions

is determined from the 'rule-of-mixtures' using Eq. C1. Then the overall creep

rate is

t/E,, = ( /a O)l(02// ld) (C2)

where d* = [(1-ý)2di + Q(2-ý)df]. By inserting the measured value for di = 2 nm

and df = 15 nm and noting that C = 0.4 after 2 h at 1200*C18, Eq. (C2) predicts a

creep strengthening of about an order of magnitude. This strengthening level is

consistent with the measurements summarised in Fig. 13.

CHW:12/92 18



REFERENCES

[1] A.G. Evans & D.B. Marshall, The Mechanical Behavior of Ceramic Matrix

Composites, Overview No. 85, Acta Metall. , 37 2657-83 (1989).

[21 G. Bao & Z. Suo, Remarks on Crack-Bridging Concepts, to be published.

[3] S. Ho & Z. Suo, Notch Brittle-to-Ductile Transition in Metal and Ceramic

Matrix Composites, to be published.

[4] M.D. Thouless, 0. Sbaizero, L.S. Sigl & A.G. Evans, Effect of Interface

Mechanical Properties on Pullout in a SiC-Fiber-Reinforced Lithium

Aluminium Silicate Glass Ceramic, I. Am. Ceram. Soc., 72 525-32 (1989).

[5] H.C. Cao, E. Bischoff, 0. Spaizero, M. Ruihle & A.G. Evans, Effect of

Interfaces on the Properties of Fiber-Reinforced Ceramics, 1. Am. Ceram.

Soc., 73 1691-99 (1990).

[6] 0. Sbaizero, P.G. Charalambides & A.G. Evans, Delamination Cracking in a

Laminated Ceramic-Matrix Composite, J. Am. Ceram. Soc., 73 1936-40

(1990).

[7] S.M. Spearing & F.W. Zok, Stochastic Aspects of Matrix Cracking in Brittle

Matrix Composites, Acta. Metall. et Mater., in press.

[81 D. Beyerle, S.M. Spearing, F. Zok & A.G. Evans, Damage and Failure in

Unidirectional Ceramic-Matrix Composite, J. Am. Ceram. Soc., 75 2719-

25 (1992).

[91 A.G. Evans & F.W. Zok, Cracking and Fatigue in Fiber-Reinforced Metal and

Ceramic Matrix Composites, to be published.

CHW:12/92 19



[101 A. Kelly & K.N. Street, Creep of Discontinuous Fiber Composites IU.

Theory for the Steady-State, 1. Mech. Phys. Solids, 14 177-86 (1966).

[11] M. McLean, Creep Deformation of Metal-Matrix Composites, Comp. Sci. &

Tech., 23 37-52 (1985).

[121 D.W. Petrasek, D.L. McDaniels, L.J. Westfall and J.R. Stephens, Fiber-

Reinforced Superalloy Composites Provide an Added Performance Edge,

Met. Progress, 130 27-31 (1986).

[13] G. Simon & A. R. Bunsell, Creep Behavior & Structural Characterisation

at High Temperatures of Nicalon SiC Fibers, J. Mat. Sci., 19 3658-70 (1984).

[141 A. G. Evans & T.G. Langdon, Structural Ceramics, Prog. in Mat. Sci.,

21 171-442 (1976).

[15] A.H. Heuer, RM. Cannon & N.J. Tighe, Plastic Deformation in Fine

Grained Ceramics, Ultrafine-Grain Ceramics, Eds. J.J. Burke, N.L. Reed &

V. Weiss, Syracuse Univ. Press, 1970, 339-65.

[16] S.M. Johnson, R.D. Brittain, R.H. Lamoreaux & D.J. Rowcliffe, Degradation

Mechanisms of Silicon Carbide Fibers, 1. Am. Ceram. Soc., 71 C-132 -

C-135 (1988).

[17] R. Chaim, A.H. Heuer & R.T. Chen, Microstructural & Microchemical

Characterization of Silicon Carbide & Silicon Carbonitride Ceramic Fibers

Produced From Polymer Precursors, J. Am. Ceram. Soc., 71 960-69 (1988).

[181 T. Mah, N.L. Hecht, D.E. McCullum, J.R. Hoenigman, H.M. Kim, A.P. Katz

and H.A. Lipsitt, Thermal Stability of SiC Fibers (Nicalon®), J. Mat. Sci.,

19 1191-201 (1984).

[19] K. Chyung, Coming Inc., private correspondence.

CHW:12/92 20



[20] C.H. Weber, J.P.A. Lbfvander, J.Y. Yang, C.G. Levi and A.G. Evans, in

Advanced Metal Matrix Composites for Elevated Temperatures, ASM

Conf. Proc., 69-77 (1991).

[21] J.W. Holmes & J.W. Jones, Creep Recovery Behavior of Nicalon Calcium-

Aluminosilicate Composites, submitted to J. Am. Ceram. Soc.

[221 J.P.A. L6fvander, J.Y. Yang, C.G. Levi & R. Mehrabian, Microstructural

Development of MoSi2 Fiber Composites Prepared by Slurry Processing

Methods, Advanced Metal Matrix Composites For Elevated Temperatures,

Ed. M.N. Cungor, E.J. Lavernia & S.G. Fishman, ASM Intl., 1-10 (1991).

[23] G. Bao, J. W. Hutchinson and R.M. McMeeking, Particle Reinforcement of

Ductile Phases Against Plastic Flow and Creep, Acta Metall. et Mater., 8

1871-82 (1991).

[241 S. Schmauder and R.M. McMeeking, to be published.

[251 S. Timoshenko, Strength of Materials, Part 11, 3d ed., Van Nostrand-

Reinhold, Princeton, (1956) 527.

CHW:12/92 21



FIGURE CAPTIONS

Fig. 1. Schematic of apparatus used for a) flexural creep assessment,

b) transverse compressive creep measurements.

Fig. 2. Overview of the fiber distribution.

Fig. 3. a) TEM bright field micrograph of interfacial layer of carbon. b) EELS

spectrum verifies that the layer is predominantly carbon.

Fig. 4. Axial creep characteristics of the composite at 1200°C.

Fig. 5. Effects of periodic unloading on axial creep curves.

Fig. 6. Transverse compressive creep curves at 12000C.

Fig. 7. A comparison of axial and transverse c'eep rates at two equivalent stress

levels

Fig. 8. The profile of a flexural specimen after testing at 12501C and 50 MPa.

Fig. 9. Surface cracks evident on the compressive face of flexural specimens

after testing.

Fig. 10. Scanning electron micrograph of matrix and interface damage found

upon transverse compression testing.

Fig. 11. Transmission electron micrograph of Nicalon fiber after creep testing at

1200'C for 50 h.

Fig. 12. Schematic of grain growth behavior in Nicalon fibers at 12001C.

Fig. 13. Normalised plot of axial creep behavior. aco/t'0 = I MPa/s.

Fig.Al. Maximum composite stress and fraction of applied moment carried by

matrix at different times during creep. Dashed line is approximate.
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Fig. B1. Maximum residual tension in matrix at different times during creep.

Dashed line is approximate.

CHW:12/92 23



LVDT

WmbwiUAO&V2mn*.O1874 4 -7 1~.



Fig.



CAS

i i

CARBON
INTERFACE

NICALON

lOOnm

Fig. 3a



NICALON' 0
CARBON INTERFACE

CASi



10-5

10-6
U)

c 10-7 -cr-

Cf

10-8 -

(e =50 MPa

10-91 1 I

0 0.2 0.4 0.6 0.8 1.0 1.2

Strain, 6 (%)

FiE.

We~.BerUd,,g2.uN'OS8,.- 1



-0

ci))

CLC%

ciC)
CD 0O1, c ~

oi 5 0 6i i 6;

()3 'Upils



10-4

S10-5

-- 0y = 75 MPa

10-6, 1 50

S10-7- 20

1 0 -9 1 1 ... .I,!
0 1 2 3 4 5

Strain, c (%)

Fig. 6



10-
4

10-5  c=75MPa

9-

O'6) 10 50 MPa

Sz ITRANSVERSEI
C.. 10-7

108 0o
0 AXIAL]

50 MPa

10-9I I

0 1 2 3 4 5

Strain, c (%)

w,•,R•-e..,• ~ t•F_4g.



E
E

FI

Fig. 8



4 7

Fig. 9



jam

FiI

C .+

Fig. 1 0



ahfa

4.1

.. It
- 4,j*P4 ~P~ ~4 'I

AD o



..... ..... S....

.. .. .. . .

Fig. 12



C
CD

0

11 
CD

CD

c-

o'o o- •.

0 II

0

o ""-6
6 0 0) 0) 0



a 1.0-

CO 7 10
1- 0.9 40 o°t=l1h

(a)

1.o
c 0.8

c 0.6
E 0.4 t=l

0.2 (b)

0 0.1 0.2 0.3 0.4 0.5

Fiber Fraction, f

w . , .t u R .1 Q ', 2 .a .o0 ,,0 1 .1 F i g . A l



c, 0.8

I-F

= 0.6 7
"-)

> 0.4 ,

fr"

0.2

0 0.1 0.2 0.3 0.4 0.5

Fiber Fraction, f

W , ,b . , U p -1 i" -.a f.D 3 o ,.1 -2 F i g . B 1



MATERIALS

STRESS CORROSION CRACKING IN A
UNIDIRECTIONAL CERAMIC-MATRIX

COMPOSITE

by

S. M. Spearing, F. W. Zok and A. G. Evans
Materials Department
College of Engineering
University of California

Santa Barbara, California 93106-5050

Submitted to the Journal of American Ceramic Society, April 1993



ABSTRACT

A study of matrix cracking in a unidirectional ceramic matrix composite under

static loading conditions has been conducted. The evolution of crack density with time

has been measured using both flexure and uniaxial tension tests. Sub-critical cracking

has been observed at stresses below that required to develop matrix cracks in short

duration, monotonic loading tests. Furthermore, a relatively high final crack density

has been observed following extended periods (-106 s) under static load. A fracture

mechanics analysis applicable to sub-critical crack growth has been developed and used

successfully to model the evolution of matrix cracking with time and applied stress.

The model incorporates the properties of the matrix, fibers and t&e interfaces, a .vell as

the residual stress and the initial flaw distribution in the matrix.
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1. INTRODUCTION

Unidirectional metal (MMC), intermetallic (IMC) and ceramic matrix composites

(CMC) have been observed to undergo multiple matrix cracking during either

monotonic or cyclic tensile loading1 -8 . All of these matrices are susceptible to either

cycle or time dependent crack growth associated with either fatigue (MMC and IMC) or

stress corrosion (CMC). Multiple cracking reduces the stiffness of the material,

contributes to the inelastic strain and results in permanent deformations upon

unloading 3,4 .

The development of multiple matrix cracks upon monotonic loading has been

extensively investigated on CMCs by analytical and experimental means1 ,3,4,9-13. It has

also been found that significant degradation of the mechanical properties of CMCs

occur upon cyclic loading1 4-16 . However, the time-dependent behavior under static

load has not been addressed. The aim of this paper is to present an experimental

investigation of such behavior, in conjunction with the mechanics needed to predict

matrix crack growth. The paper builds upon previous experimental studies of the

SiC/CAS system3,4 and associated modelling3,4,10-12.

2. EXPERIMENTAL PROCEDURES

2.1 Mechanical Tests

All experiments were conducted on a unidirectional laminate of Nicalon/CAS

material provided by Corning 17. Relevant material properties are summarized in

Table I. Tensile specimens were prepared by dianmond machining coupons having

dimensions 150 x 3 x 2.8 mm, followed by polishing. Similar procedures were used to

prepare flexural specimens having dimensions 50 x 3 x 2.8 mm, with the fibers oriented

along the beam axis.
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Tensile tests were conducted in a servohydraulic machine, at constant load. For

such tests, aluminum tabs were bonded to the specimen ends to ensure even load

transfer from the hydraulic grips and also to avoid crushing of the specimen. Surface

replicas were periodically made using a cellulose acetate tape. The replicas were

subsequently examined in an optical microscope to determine the crack density. The

flexure tests were conducted in four-point bending with inner and outer spans of 20 and

40 mm, respectively. The apparatus was situated within an optical microscope,

allowing in situ observations to be made of the cracking process on the tensile face of the

beami. A thermometer and humidity gauge were placed near the specimens during the

tests. The temperature was consistently in the range 15 to 20'C and the relative

humidity varied from 60 to 80%.

After the onset of matrix cracking, the stress distribution in a flexural beam

becomes non-linear. Analysis of the errors associated with the non-linearity (Appendix)

indicates that the stress on the tensile face is within -10% of the nominal value calculated

on the basis of linear-elasticity. In the subsequent presentation, only the nominal stress

corresponding to each flexure test is reported. The following results validate that stress

re-distribution does not influence the important trends in the damage evolution process.

2.2 Crack Density Measurements

Previous experience with unidirectional CMCs (including CAS/SiC) indicates

that, during tensile loading, matrix cracks develop into more-or-less periodic arrays,

with a characteristic crack spacing 3,4. The cracks generally span a significant fraction of

the specimen width and are bridged by fibers. One such example is shown in Fig. 1.

Because of the periodic nature of the cracks, the average crack spacing can be related to

changes in the composite modulus and the permanent strain following unloading using

SNo particular effort was made to control the test environment.
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relatively simple models based on shear lag 3,4 . This experience suggests that the

relevant measure of damage in such composites is the linear crack density, measured

parallel to the fiber directiont. This approach was adopted in the present study. In all

cases, the crack density was measured along a 20 mm gauge length parallel to the

tensile axis. At the outset of each test, only one gauge length was examined. After

longer durations (- 30 minutes), measurements were made along three separate gauge

lengths parallel to one another.

In making such measurements, two complicating features were encountered. In

some instances, cracks were seen to bifurcate. Invariably, one of the branches arrested

after propagating - 10-30 pim, whereas the other continued to propagate large distances.

An example is indicated on Fig. 1. In other instances, cracks propagating in one

direction arrested when they reached other cracks which were on nearly the same plane,

but propagating in the opposite direction. In such cases, both sets of cracks arrested

after propagating - 10-30 gin past one another. An example is again indicated on Fig. 1.

These artefacts were excluded from the present crack density measurements. This was

accomplished by counting only those cracks that traversed more than - 40 pm on both

sides of the gauge line.

3. EXPERIMENTAL RESULTS

In situ observations of the flexure specimens indicated that matrix cracks evolve

over time at constant load. Two types of cracking were observed (designated Type I

and Type I) . At low stresses and short times, Type I cracking occurred. In this case,

cracks appeared suddenly and grew rapidly across the specimen width. There was no

SThe linear crack density is equivalent to the inverse of the average crack spacing.
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evidence that visible cracks were subject to detectable growth'. This observation

suggests that sub-critical* growth occurs at very short cracks which are invisible in the

optical microscope. At larger lengths, the cracks propagated under sub-critical

conditions at a sufficiently high velocity that they could not be followed in the optical

m! xoscope. Type I behavior coincides with low crack densities.

Type II behavior, at higher stresses or long times, involves the extension of

existing, long cracks, between other closely-spaced cracks. One such example is shown

in Fig. 2. This behavior arises at high crack density. This observation suggests that the

cracks "shield" each other, thereby reducing the driving force for further growth, as

shown schematically in Fig. 3.

In situ measurements of the crack density, p, in the flexure specimens revealed

strong effects of the applied stress (Fig. 4(a)). This contrasts with the behavior of

monolithic ceramics, for which time-dependent effects are only apparent at stresses

close to the instantaneous failure stress. Two features of the damage evolution process

are noteworthy: (i) At stresses below the matrix cracking stress measured in short

duration, monotonic tests (-150 MPa), no cracks were visible initially. However,

appreciable cracking subsequently occurred over a period of - 106 s. Indeed, the final

crack density, pf, measured at - 125 MPa reached a significant fraction of the saturation

crack density, Ps', found in short duration, monotonic tests (pf = 1/2 ps)4 . (ii) At either

long times or high stress, p tends toward a constant value (p - 12.5 cracks/mm). This

level is higher than ps.

Measurements of crack density made from surface replicas of the tensile

specimens are shown in Fig. 4(b). One of these tests was conducted at a stress close to

Detectable crack growth is defined as the condition wherein the crack velocity is sufficiently low to
allo,,, crack growth to be followed in the microscope. In contrast, sub-critical crack growth refers only to
cor ., r ons wherein the crack tip energy release rate is below the composite toughness. High crack
gre.,vlt rates (- 10-3 m/s) have been measured in monolithic glass-ceramics under sub-critical
conJiaons18 . Such behavior would not result in detectable growth.

"Ps - 10 cracks/mm.
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the initial matrix cracking stress (150 MPa) and the other at a higher stress (200 MPa).

The results show trends similar to those found in flexure at comparable stress levels.

The slight discrepancies may be attributed to differences in the stress states in the two

types of tests, as well as variations in the testing environment (temperature and relative

humidity). An assessment of the effects of flexure on matrix damage is given in the

Appendix.

4. DAMAGE MECHANICS

The experimental observations affirm the existence of appreciable effects of time

on matrix cracking. The modelling approach used to rationalize the experimental results

has the following features. Wi) Crack growth in the matrix is governed by the crack tip

energy release rate, qtip, in association with a stress corrosion law. (ii) Bridging of the

crack by fibers occurs, subject to a sliding stress, t. The magnitude of T can change as a

result of environmental interactions. However, in the following analysis, t is assumed

to be constant along the debonded interface. (iii) Fiber bridging is subject to two

regimes. When the cracks are short, the tip energy release rate increases with crack

length. When the cracks are long, the tip energy release rate is independent of crack

length. (iv) Once the cracks became closely spaced, the slip lengths of neighboring

cracks overlap, reducing the driving force for additional crack growth. Much of the

relevant mechanics has been derived elsewhere9-13 . In this section, adaptations of the

existing mechanics suitable for sub-critical crack growth are presented.

*These f( 'hures are suggested by the present consensus regarding the mechanisms of stress corrosion in
ceramics19.
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4.1 Energy Release Rates

The effects of bridging fibers on the crack tip energy release rate Gtip or stress

intensity Ktip for single, isolated cracks have been extensively analyzed 9-13 . Here, the

numerical results of McMeeking and Evans13 are presented and adapted to the problem

of sub-critical crack growth. The trends in energy release rate with crack length (from

Fig. 6 of Ref. 13) are shown in Fig. 5. These results are found to be well-approximated

by two analytical expressionsý. When 2 4 at R/t a < y,

GripE Y123otR'•

2 rra(lv 2 ) 25 ' a
Y a (1-/ (1a)

and, when 2 aOt R/t a > y

G__p_ E 1 (2tcotR.

a 2 na(1_v 2 ) 127t ( a (1b)

where R is the fiber radius; 2a is the crack length; E is the longitudinal composite

modulus,

E = f Ef + (1-f) Em (2)

with Em and Ef being the moduli of the matrix and the fibers; V is Poisson's ratio,

assumed to be the same for the matrix and the fibers; y is a numerical coefficient

,y = (12n / 25)3 - 3.43 (3)

SThese features are suggested by the mechanisms of stress corrosion found in monolithic ceramics1 9.
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at is the stress (applied plus residual),

at= a + q E/Em (4)

with q being the residual axial stress in the matrix; and 4 characterizes the elastic

properties.

(1-f)2 E 2

fEEf(1...v) (5)

The expressions (1) and (2) are accurate to within 5% over the range

0 < 24 OR/ta • 20 (Fig. 5)t.

For subsequent analysis, Eqns. (la) and (1b) are re-written in terms of two fixed

quantities, independent of stress and crack length. The first is the steady state matrix

cracking stress in the absence of residual stress, ao. This stress is obtained by setting Gtip

equal to the composite toughness,

F = rm (1-f) (6)

with Fm being the matrix toughness, whereupon9,11

(6Ed f2E2Fr JY3

* Note that the result of Eqn. (0a) corresponds to the short crack regime wherein the tip energy release
rate increases with crack length. In contrast, the result of Eqn. (lb) corresponds to the steady-state
regime wherein .bp is independent of crack length.
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This is the stress required to propagate a steady-state crack under monotonic tensile

loading (in the absence of sub-critical behavior). The other quantity is the crack length,

ao, at which steady state conditions are attained at 0 = ao. This length is obtained by

equating the expressions for Grip in Eqns. (1a) and (1b), yielding

ao =2 R(aO +qE/Em) (
yT (8)

Upon combining Eqns. (7) and (8) with Eqns. (1) and (2), the final results are:

_ _ _ Gtp(at ) 3( a )' a < _I
m (1) kao) 0 a 0o [a (oT (9a)

and

_ty [a atl
rm (1-f) -. o 0 0 > (9b)

The predicted trends in energy release rate, qtip/rm (1-0, with crack length,

a/ao, for various values of stress, at/0o, are presented in Fig. 6. Also shown by the

dashed line is the boundary between the short crack and long crack regimes. These

results predict three types of behavior, depending on the level of stress. (i) When

at = (Yo, the energy release rate initially increases with crack length, but reaches a steady

state value equivalent to the composite toughness (Fr (1-0) at a crack length a = ao.

(ii) When at > Oo, the energy release rate reaches the toughness at a crack length,

a/ao = (0/;0)-8. Crack growth beyond this point occurs subject to a constant energy

release rate, equivalent to the toughness. The steady state conditions predicted by

Eqn. (9b) are never attained. (iii) When at < Go, the energy release rate reaches its

10



steady-state value, (at/0o)3 , at a crack length, a/ao = O/a1o. In this regime, the energy

release rate never reaches the toughness. Consequently, the cracks extend only under

sub-critical conditions.

When multiple matrix cracks occur and interact, an important quantity in the

mechanics is the slip length, d, between matrix and fiber, given by9,12,

d/R = 2Eft/(a + qE/Em)Em(1-f) (10)

When the slip zones between neighboring cracks overlap, Gtip for long cracks falls

below the steady state value, Go, for a single, isolated crack, given by

(a+qE/Em) 3 E (1-f)2 R

Go = 6Tf2EfE2 (I

The relationship between t•ip and Go is dictated by the spacing, I, between neighboring

cracks relative to d 12, and ca a be expressed as

Go [•->2]
qtip =I4(1 L. [1 > 21

Go I - I(12a)

Gtip =1-4 1-_ 1 <5 1 2

Go 2d) d I (12b)

Gti_...( " =3 0< !5 <I

Go 2d d . (12c)
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Once again it is convenient to re-express these results in terms of two fixed quantities:

the steady state matrix cracking stress, aO (defined in Eqn. 7), and the slip length, do, at

G• = GOo:

do/R = (ao+qE/Em)Em(1-f)
2Ef T (13)

Combining Eqn. (9) with (4) and (10) yields the results

rm (1- f) [do) [•do ao (14a)

_E_) 1-4 [-Et- < 2at]F _ _ _ ( )a t !!1 04 2d3 ]

FM(01 f) aT I - 2do at (O L do do 0 (14b)

r ti 4(-t) 3 0 < < EL

Fm(1J) 2d [ Tdo .YI (04c)

The predicted trends in energy release rate, Gtip/Frm (1-0, with crack spacing, I/do, for

several values of stress, at/ao, are shown in Fig. 7. These results also predict three

types of behavior, depending on the level of stress. (i) When at < aO, the energy

release rate is independent of spacing, provided that L/do > 2 at/ao. In this regime,

the slip lengths of adjacent crack do no overlap. When the crack spacing is in the range,

at/oo ! t/do < 2 at/ao, the energy release rate decreases with decreasing I at a rate

that depends on the stress. Once the crack spacing reaches L/do 5 at/ao, the energy

release rate decreases with decreasing I at a rate independent of stress. (ii) When the

stress is in the range, 1 5 at/ao < 21/3, the crack spacing immediately drops to

12



Further reductions in spacing lead to a decrease in Gtip, first at a rate dependent on

stress (over the range at/ao -< I/do < 2 at/ao), then at rate independent of stress

(over the range 0 < LI/do : t/ao). (iii) Finally, when the stress Ot/ao > 21/3, the

crack spacing diminishes to I/do = 21/3. Further reductions in crack spacing lead to a

drop in Grip independent of stress.

4.2 Crack Growth

The preceding energy release rates Gtip can be used in conjunction with a crack

growth criterion to predict crack evolution. As noted above, stress corrosion is

considered to be the mechanism that causes time-dependent matrix cracking.

Consequently, crack growth can be described by the commonly-used power law,

dta = Ao(Ktip/Kn)n =- Ao(Gtip/Fm(l-f))"'(6
dt tp nom 1 (16)

where ao is a reference velocity, n is the power law exponent and Km is the critical stress

intensity factor for the matrix. For aluminosilicate glass ceramics,8, stress corrosion is

caused by moisture and the power law exponent is, n - 50.

To provide a basis for further modeling, it is instructive to re-state the key

experimental observations. The process of crack evolution exhibits three regimes. (i) At

low stresses and small crack densities (Type D, damage evolution is governed by short,

non-interacting cracks, with qtip given by Eqn. (9). In this regime, because n is large,

the behavior is dominated by stress corrosion occurring when the cracks are sr.;ll and
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invisible. (ii) At either high stresses or long times (Type 11), multiple cracks are already

present, and further crack growth occurs under steady-state conditions (independent of

crack length), with Gtip given by Eqn. (14). Then, the new cracks should b,- continually

visible and grow at a discernible, near-constant velocity across the specimen. (iii) An

intermediate regime must exist which combines features of type I and II behaviors. The

behavior in this regime is inherently difficult to analyze and is not considered in this

study. Instead, interpolation between type I and type H1 could be used.

4.2.1 SI•et Cracks (Type 1)

For short, nor-interacting cracks, the time ti required to grow a matrix crack of

initial length ai is evaluated by integrating the growth law (Eqn. (16)) between

appropriate limits, yielding the result

1 af/ao dm(_ (al

do Jai/ao (tip 0 ) (17)

whLre af is an upper limit on the crack length, described below. Two cases are

considered, defined by the level of stress. In the first, at/0o > 1. In this regime, the

appropriate upper limit on the integral is the crack length at which Gtip reaches the

composite toughness. Beyond this point, the crack grows catastrophically. As noted

earlier, this limit is, af/ao = (O/yO)"8. Combining this result with Eqns. (9a) and (17)

gives

] O•-4n/%3 
ft/°-8 

(i -6

Ao ao .fa,/a, kao} aoo}

9}/3 6 ") [(K a)(-' _1ai

L
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For the material of present interest, n is large and thus (Cr/(yo)-8(1-n/6) << (a,/ao)( 1-n/ 6).

Consequently, Eqn. (18) reduces to

.A 0 4 0) V 6 a, (19)

The second regime is defined by a/l5o < 1. In this case, Gtip initially increases

with crack length according to Eqn. (6), but then reaches a steady state level given by

Eqn. (9b), at a crack length a/ao = Cr/ao. It is therefore convenient to separate the

integral in Eqn. (15) into two parts. One is for condition wherein Gtip increases with a,

and the other for Grip independent of a. The result is

=/a (a_- d) _ t a, /a+ ad( + at)6jt 1 i JYi0 1iaa ) Lao) a. a CF Joc 0d

1 4o f' 6~' E( Ot )()(ai~)1) + (at y3  ar f c
) -) 0 J, j~o ,(20)

where af is on the order of the specimen width.

Once again, because n is large, (a/1o)(1-n/6) << (ai/ao)(l-n/6). Furthermore, the

experimental observations suggest that, once steady state conditions have been attained,

the time required to grow the crack across the specimen width is relatively small. As a

result, the last term in Eqn. (20) is neglected. With these approximations, Eqn. (20)

reduces to

tj I cr, 3(A 6 6)-
6 n-6 a °ao (21)
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which is equivalent to the result in Eqn. (19). Consequently, the distinction between the

two regimes is neglected in the subsequent analysis.

A representation for the matrix flaw distribution is now needed in order to

predict damage evolution. For this purpose, an extreme value matrix flaw size

distribution is assumed, given by

[ja]
F = l-exp[_V(.a

FV- aj (22)

where F is the fraction of flaws having size greater than ai in a volume V, a is the shape

parameter, and a- and V. are scale parameters. Consequently, if 11Tv is the total number

of flaws per unit volume, the number 71 having size a > ai is

C _ a._. jTI = Iv -ex•[- v a-ýj J (23)

Assuming that only the largest flaws in the distribution evolve into visible matrix cracks,

Eqn. (23) reduces to

11 = TIv (V/V*)(aI/ai)a (24)

Combining this distribution with Eqn. (21) gives the number of flaws, 11s, that have

developed into steady state cracks within a time, t.
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)i 6,c" 
X4 

-6)

IS V C , (n -6" (n -6, (t 06o/( -6) (.at

=, oy 0 0 (25 )

where

8naX
n-6' (26a)

and y 6a (26b)
n-6

while X contains all of the parameters characterizing the flaw distribution.

Furthermore, the linear density of cracks p measured parallel to the tensile axis, is

related to 71s through

p = A -tls (27)

where A is the cross-sectional area of the composite.

Equations (25) and (27) suggest that the evolution of crack density can be

described by a generic law of the form

P = Xty (x (28)

where V' embodies all the relevant material properties. However, many of the

properties contributing to V' are poorly characterized. Consequently, it is expedient to
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use Eqn. (28) to fit data at one stress level and then predict crack growth rates at other

stress levels.

4.2.2 Long Cracks

The evolution of crack density in the regime characterized by high stresses and

high crack densities has been computed in a similar fashion. In this case, the governing

relations for Gtip are given by Eqn. (14). Since the energy release rates are crack length

independent, the crack density is computed by combining Eqn. (14) with Eqn. (16) and

numerically integrating. Some predicted changes in crack density with time for a range

of stresses are plotted on Fig. 8. In general, interpolation between these curves and the

short crack results is needed to establish the overall behavior. An approach for such

interpolation has not yet been established. However, it is important to note that,

regardless of the initial state, the crack density eventually evolves with time in a manner

independent of stress. This behavior arises because the strain energy release rates for

multiple cracks converge to a single curve at high crack densities (Fig. 7), corresponding

to the regime of closely-spaced cracks where Eqn. (14c) operates.

4.3. Comparison with Experiment

The approach used to compare experiment to theory involved two steps. (i) One

set of experimental results was fitted to the model, in order to evaluate the unknown

constants, (ii) By using tlhe same constants the model was used to predict the behavior for

other testing conditions. Comparisons of the constants inferred in this manner with

values expected from corresponding phenomena occurring in monolithic material

assess the consistency of the models. This procedure was applied separately to the low

and high stress regimes.
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The model was used to examine the data shown in Fig. 3(a). In the low stress

regime (Type I), Eqn. (28) was fitted to the data at 120 MPa, using a stress corrosion

exponent, n = 5018 (Fig. 9). The best fit line corresponds to a value of the shape

parameter, oa = 1.5. The value of ax inferred from this comparison corresponds to a

Weibull modulus*, m =3. Values in this range are reasonable for ceramic matrix

composites. Using the same constants, the model was used to predict the crack densities

at other stress levels (Fig. 9). Evidently, the model predictions are in reasonable

agreement with the experimental results for stresses 0•< 150 MPa and for crack densities

p Z 6 mm. This model thus appears to provide a satisfactory description of damage

evolution at low stresses and low crack densities.

The model predictions for type II behavior at high stresses and high crack

densities was assessed by using the same stress corrosion exponent (n = 50). The curves

were fitted to the measured crack density at 250 MPa after 10 s (9.7/mm), and then used

to predict the behavior at other stresses and times. These predictions appear to be

consistent with the data at stresses (Y a 180 MPa at crack densities p > 8/mm.

5. CONCLUDING REMARKS

Matrix cracks have been shown to develop in a time-dependent manner in a

unidirectional Nicalon fiber/CAS matrix composite. The phenomenon has been

rationalized by a stress corrosion mechanism operating in the matrix. This process

results in crack growth at stresses below that found in short duration monotonic tests.

Furthermore, for most stress levels, the crack density ultimately evolves with time in a

manner independent of the stress, and reaches values higher than those found in

The shape parameter, a on flaw size (Eqn. 22) is half that for the tensile strength, via the Griffith
relationship.

19



monotonic tests. Both of these observations have implications for the use of these

materials in structural applications. The behavior of the composite contrasts with that

of monolithic ceramics for which stress corrosion only occurs at stresses within a few

percent of the failure stress. It is anticipated that ceramic matrix composites will be

subjected to localized stresses well above the matrix cracking stress, in which case it will

prove necessary to account for the effect of stress corrosion in the design process.

A fracture mechanics analysis has been used successfully to model the

development of multiple matrix cracks with time and applied stress. The model has

been developed separately for the regimes dominated by either non-interacting short

cracks or interacting steady-state cracks. The approach is consistent with existing

models for matrix cracking under monotonic loading conditions. However, a method

for interpolating between the two regimes has yet to be developed.
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TABLE I

Properties of Unidirectional CAS/SiC Composite 4,20

Property Value

Fiber Radius, R (pm) 7.5

Fiber Volume Fraction, f 0.37*

Matrix Modulus, Em (GPa) 97*

Fiber Modulus, Ef (GPa) 200

Thermal Expansion Coefficient of Matrix, (nm (K-1) 5 x 10-6

Thermal Expansion Coefficient of Fibers, (af (K-1) 4 x 10-6

Sliding Stress, -T (MPa) 10-30

Residual Stress, q (MPa) 89

Matrix Fracture Energy, rm (J/m 2) 25

Matrix Cracking Stress, (0 - q E/Em (MPa) 130-150

Ultimate Tensile Strength, (u (MPa) 450

Ultimate Strain, Eu 1.0%

* K. Chyung, Coming Labs
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APPENDIX: An Assessment of the Effect of Flexure

During flexural loading of unidirectional CMCs, matrix cracks develop along the

tensile face of the beam, leading to non-linearity in the stress-strain response. As a

result, the nominal stress calculated from Euler-Bernoulli beam theory, assuming the

material to be linear elastic, overestimates the true stress acting along the tensile face.

The following analysis provides an estimate of the effects of such non-linearity on the

maximum tensile stress in a flexural beam, both at the onset of loading and after an

extended period under load.

The initial stress distributio:t (upon loading) is calculated assuming that: (i) the

compressive stress-strain response of the composite is linear, with a modulus given by

the rule of mixtures; (ii) the tensile response is that measured in a short-term uniaxial

tensile test (Fig. Al), and (iii) the strain distribution across the beam remains linear. The

analysis involves two steps. In the first, the sum of the forces acting parallel to the fiber

direction is set equal to zero, enforcing static equilibrium. This condition can be

expressed as

0J e e+J CYT (E) de = 0 (l_ cd+ o (Al)

where GT (C) is the tensile stress-strain relation, and cc and CT are the maximum

compressive and tensile strains, respectively. Solving the first integral in (Al) and

re-arranging gives

cc [ 'a jT (E) dcj(~•c - f•oT)d I (A2)

This equation relates Cc to ET. In the second step, the applied bending moment, M, is

equated to the moment supported by the beam. This condition can be writtern as
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M (ET-eC)2 (E (A3)

where B is the beam depth and D the height. The nominal stress, 0 nom, calculated on

the assumption of linear elasticity, is related to M through

anom = 6M/BD2. (A4)

Combining Eqns. (A3) and (A4) leads to the result

Snom - (eTC)2 Ee + 6  e c)del
(FT-c (A5)

To proceed further, an expression for OT (C) is required. For this purpose, the

measured tensile stress-strain curve is fit by a polynominal of the form

aT(E) = aC + be 2 + cE 3 + d 4  (A6)

where the coefficients a, b, c and d are

a = 1.4xl05MPa

b = -1.12x107MPa

c = -3.89 x 109 MPa

d = 5.51x1011 MPa

This polynominal provides a good description of the experimental curve over the

relevant range of stresses (0 _< OT < 300 MPa), as shown in Fig. Al.
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Equations (A2), (A5) and (A6) have been combined to determine the relation

between the stress OT on the tensile face and the nominal applied stress, anom. The

results are presented in Fig. A2. Below the first matrix cracking stress (150 MPa), the

two quantities are equal, since the composite is linear-elastic in both tension and

compression. At higher nominal stresses, the true stress deviates from the nominal

value, the difference increasing with increasing anom. At the highest stress used in the

present study (Onom = 250 MPa), the difference is -11%.

Under sustained loading, additional matrix cracks are developed, leading to

further stress re-distribution across the beam. A rigorous analysis of this problem is not

presently feasible. However, it is instructive to consider a limiting case in which the

stresses in the matrix on the tensile side of the beam are reduced to zero, such that the

fibers support all the stress. In this case, the tensile response of the composite can be

taken to be

19T(V) =ET C WA)

where ET is an effective (reduced) tensile modulus. A conservative estimate of ET is

cu/Eu, where au is the ultimate tensile strength and Cu the corresponding tensile strain.

This relation is plotted as the dashed line in Fig. Al. In this case, Eqns. (A2) and (A5)

reduce to the simple analytical result

aUT/(anom = (l+4-Ou/Eeu)/2. (A8)

Using the experimentally measured values au = 450 MPa and Eu = 1.0% gives

OT/norm - 0.80. This result is plotted on Fig. A2. At most, there is a 20% reduction in

the stress below the elastic value.
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FIGURE CAPTIONS

Fig. 1 An optical micrograph showing matrix cracks in the CAS/SiC composite

following a short duration, monotonic tensile test. The arrow labeled "A"
indicates an example of a crack that had bifurcated and arrested. Arrow "B"

indicates a crack that arrested as it approached another crack on nearly the

same plane.

Fig. 2 (a) Micrograph of matrix cracks upon initial loading of a flexure specimen to

175 MPa. (b) Micrograph of the same region after 3 days at the same level of
stress. Note the additional growth of matrix cracks in (b) (indicated by

=rrows).

Fig. 3 Schematic diagram showing the type of cracks observed either at high stress

or long time, and the expected variation in energy release rate as the cracks

interact.

Fig. 4 Evolution of crack density with time under static load: (a) flexure tests,
(b) uniaxial tension tests. For comparison, the results of (b) have been

superimposed onto (a) using dashed lines.

Fig. 5 Trends in crack tip energy release rate with crack length (adapted from [131).

Fig. 6 Variation in energy release rate for single, isolated crack with crack length.

Fig. 7 Effects of crack spacing and stress on the steady state energy release rate.

Fig. 8 Predicted trends in crack density evolution, assuming existing long

(steady-state) cracks based on Eqn. (9).

Fig. 9 Comparison of damage evolution predictions with experimental
measurements.
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Fig. Al Tensile stress-strain response of the CAS/SiC composite.

Fig. A2 Variatior, in the stress, (T, acting along the tensile face of a flexure specimen
with the nominal stress, Gnom.
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TENSILE AND FLEXURAL ULTIMATE STRENGTH OF

FIBER-REINFORCED CERAMIC-MATRIX COMPOSITES

Franqois HILD Jean-Marc DOMERGUE

Frederick A. LECKIE A thony G. EVANS

Abstract: A constitutive equation has been derived for fiber reinforced ceramic-matrix

composites, based on fiber breakage and distributed fiber pull-out. Length

dependent and length independent regimes, governed by the taze of the

specimen, are differentiated. The constitutive equation is used to predict the

ultimate strength of fiber reinforced ceramic-matrix composites subjected to

tensile and flexural loadings.
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1. INTRODUCTION

The stress-strain behavior of ceramic-matrix composites (CMCs) is non-linear,

provided that the interfaces slide with low shear resistance, T . The loading of such

composites results in two independent damage mechanisms: fiber failure and matrix

cracking. The latter results in a diminished secant modulusE, as well as a permanent

strain, Ep [Pryce and Smith; Beyerle et al.]. Furthermore, the fibers are subject to global

load sharing, whereby the load transmitted from each failed fiber is shared equally

among the intact fibers. Some aspects of the associated fiber failure stochastics have

already been addressed [Curtin, 1991 a, b]. Two key parameters have been identified:

a) a characteristic length

V.= [SILS. R (1)

where m is the shape parameter, So is a stress scale parameter and Lo a reference length;

b) a characteristic strength

S'+1 = LoS',c/R (2'

When the gauge lengt',- L, is large compared with 8c, the fibers are capable of multiple

failures within the gauge section. Consequently, the ultimate strength Su is predicted to

be gauge length independent, and given by [Curtin, 1991 a, b],

S _ f S [2/(m + 2)] V(M")[(m + 1)/(m + 2)] (3)

where f is the fiber volume fraction along the loading direction. Validation of Eqn. (3)

has been provided for several CMCs, subject to global load sharing (small ¶ If Sc)
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[Heredia et al., 1991; Beverle et al., 1991]. Deviation from Eqn. (3) would be expected

both for short gauge lengths, LZ 5, and when the stress on the composites is non-

uniform. These effects are analyzed in this paper. The analytic approach has the same

fundamental features established by others [Curtin, 1991 a, b]. However, the formulae

are rederived to enable the solution to be presented in a form that facilitates analysis of

composite failure subject to complex situations, such as non-uniform states of stress.

2. THE BASIC STOCHASTIC MODEL

A composite with a saturation density of matrix cracks is considered, spacing Lm,

within a unit cell of length LR (Fig. 1a). The length LR is the recovery length and refers to

the longest fiber that can be pulled out and cause a reduction in the load carrying

capacity. The recovery length is thus related to the maximum stress in the fiber by

LR = RT/tr (4)

where the reference stress T is the fiber stress in the plane of the matrix crack. Generally,

Lm << LR and the stress field in intact fibers have the form illustrated in Fig. lb.

Consequently, the local stress in the fiber [Cox, 1952; Kelly, 1973] is (0 '< x R Lm/2):

OF(T,x) = T-2cx/R (5)

If the fibers exhibit a statistical variation of strength that obeys a two-parameter law

[Weibull, 1939], then the probability that a fiber would break anywhere within the

characteristic length LR at or below a reference stress T is given by
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PF (T) =iexp[, ' LO/ (so)} dxl 6

Consequently, from Eqns. (5) and (6),

[ ___T_ __ ÷ {1-_}

PF(T) = 1-exp - mLR t,_l I T
I(m±l)L,,,S j* T (7)

Often, -T Lm/RT << 1, so that Eqn. (4) can be simplified to

PF(T) (-8)xp[_t) + (8)

The cumulative failure probability is thus independent of the total length of the

composite.

The average stress a applied to the composite is related to the reference stress T by

- = fT[1-PF(T)]+ffap(T) (9)

where ap (T) denotes that component of the stress provided by failed fibers as they pull

out from the matrix. For global load sharing, the pull-out stress is given by

T dPF
GP(T) f 'dP ,b(o)da (10)•0 do

where 5 (a) denotes the average stress at x = 0 when a fiber breaks at location x = t,

and at the reference stress level 0
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Lf/2

Uý'(a) f ab (t) f(t, y) d t
L-L, (1 /

where f(t, G) is the probability density of failure locations. When the load is assumed to

be constant over the entire recovery length, f(t, a) = 1 /LR, the average pull-out stress

(at reference stress C) reduces to

( ) LR/2

Ub (0)- L Jfb(t)dt
"\R -IL 2 (12)

For t < 0

Ob(t) = - 2't/R

and for t > 0

Cab(t) = 2"t/R

Provided that the composite length L > LR, the average pull-out stress, at reference

stress level aY, is

i (a) = q/2 (13)

Then, the external stress takes the form

KJS-Evans-26oTw-Z'TA-Unf Eq 92/03/03,11:28 AM,4/28/92 6



I I IS ,I I+ III "

= fT[1-PF(T)]+.--y- m+ t Yc 1 (14)

where y [- ; -] represents the incomplete gamma function.

If pull-out were neglected, the following formulae would apply,

U = fT[1-PF(T)] (15)

and

fT =
1- PF(T) (16)

This latter expression is analogous to the concept of effective stress in the framework of

Continuum Damage Mechanics [Kachanov, 1958; Rabotnov, 1963; Lemaitre and

Chaboche, 19901, when the damage variable, D, is described as the percentage of broken

fibers [Krajcinovic and Silva, 1982; Hult and Travnicek, 1983; Hild et al., 1991] in a cell

of length LR.

The ultimate tensile strength of the composite is defined by the condition

dd/dE = 0

or

dU/dT = 0 (17)

because the reference stress T is proportional to the average strain on the composite

KJS-Evan.s-26-Tw-ZoTA-Unf Eq 92/03/03.1l"28 AM,4/28/92 7



= 2 L/ OF (Tx) dx= T/Ef
2L 0 (18)

where Ef denotes the Young's modulus of the unbroken fibers. The ultimate strength

arises when

T = ( 2 (19)
m+1(

at a recovery length

LR /2 •(''

8" = m+1) (20)

Since, 5c = Lo(So/Sc)m, the number of defects N which cause failure at a stress, T So

in a fiber of length 8 c is given by [Curtin, 1991a, b]

N= L"•,So = (21)

Consequently, the ultimate tensile strength becomes

SU f C J(2 ) /(M+1) ep(_ -3-)+ 1f[mr + 2 ; m+ 2]
Sum= +Sc•-•+•, m+1 2m +1'm+1

(22)
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The ultimate tensile strength is independent of the total length of the composite ICurtin,

1991a, bi, and the relevant scaling stress is the characteristic stress S. Equation (22) can

be rewritten using a series expansion

S = fSF(m) (23)

where

F()2)I--[ 1 (-1)' 2 +n(m+l1) 2`-1
( m+1 n ll+n(m+1) (m+1)F(m) = ___ 1+i,2 n 21+n(m+i1) 2r~l'

The function F increases as m increases (Fig. 2a) and tends asyn,ptotically to unity.

However, the ultimate tensile strength when normalized by explicit fiber properties

decreasest as m increases (Fig. 2b). Consequently, a larger scatter leads to higher

ultimate tensile strength. An approximate expression for the ultimate tensile strength

can be obtained by reducing the function F to its first order (n = 1):

SU S,[ 2 ]I/(ni")[ m2+2m-1

___ (m + 2 ( + ] (24)

This result has essentially the same dependence on m as Eqn. (3), which was also

derived by using an approximation [Curtin, 19911.

From a continuum damage mechanics perspective, it is useful to relate the average

stress d and strain E, given by:

SIn the two figures, the values taken for the material parameters are those used by Jansson and Leckie
11991J.
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a = rEFZ[1- PF(EF0 )]+ rf SE + " 2 ) 
2+ 1

2 m +I ac(25a)

or

Ul.fS, = (Ef E/S')[I++ I (-I)" 2+n(m+l) _ E •(,•.)](+

= 2n! 12+n(m+1) I (25b)

In general, thermal residual stresses due to processing cause an additional contribution

to the strain associated with the displacements that arise upon matrix cracking (Pryce

and Smith, Beyerle et al.).

The preceding basic results will now be used to derive solutions for two new

problems: i) short specimens with L Z LR and ii) flexural loading.

3. SHORT SPECIMENS

3.1 Stochastic Solutions

When the recovery length LR becomes greater than the total length of the composite

L, the previous results no longer apply, and the cumulative failure probability becomes

length dependent,

P1(T) =- 1-exp[ ,S0,] (26)

The corresponding average pull-out stress at stress level T is given by
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ab = -TL/2R (27)

The external stress takes the form

S= fT[1-PF(T)I+f 2 c . m+2L" _ + fa
L m +1(28a)

where the stress a; corresponds to the revised contribution from pull-out

0, L exp - ]-exp -

2R= IR { [{ Lx[t, SO J (28b)

The external stress is now explicitly dependent upon the total length of the composite, L.

The ultimate tensile strength is solution of the follcwing equation,

-m--T- m + mL-)I(T = -
8 SC 5 SC(29)

A closed form solution for Eqn. (29) does not exist, but a typical result is p!otted on

Fig. 4. When L = LR, the solution is

=C (l (30)

such that

CLR - 2y(+)
SC m (31)
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Furthermore, as L -4 0, S tends to the ultimate tensile strength obtained by neglecting

the contribution associated with distributed fiber ptfll-out (Fig. 3),

L -~I/rn

Su (L) f So y-Ljyj1/ exp(.- -1) = Sb (32)

where Sb denotes the classical fiber bundle strength. In this case, the length dependence

has the desired form for a fiber bundle. Similar result, have been independently derived

by Curtin [1992].

The solutions for short and long gauge lengths intersect in the region where

f 2 y/(iT 1) L(2~/mi
m-"+ 1) 6< Mc (33)

The length at the intersection is a transition length, L (S, is length dependent when

L < L* and length independent when L > L*). In terms of normalized quantities (L/8c

and T/Sd), L* only depends on m (Fig. 4): Note how the actual intersection L'/U c

compares with the two bounds given in Eqn. (33).

3.2 Comparison with Experiment

Compari'on of the above stochastics will be made with three different experimental

results for CMCs. i) Experiments on LAS matrix composites reinforced by SIC (Nicalon)

fibers provide the general information summarized on Table I [Prewo, 19861. For each

specimen, the transition length L* is small (< 3L), suggesting use of the gauge length

independent solution. The corresponding predictions are given on Table I. It is apparent

that the agreement between experiment and prediction is quite good, especially for
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: = 3 MPa. ii) Experiments performed on two carbon matrix composites (material A

and C) reinforced bv SiC (Nicalon) fibers [Heredia et al., 1991]) are summarized in

Table U. Again, the predictions agree well with experiments. iii) Experiment on a CAS

matrix reinforced I -' SiC (Nicalon) fibers provide the data summarized in Table III

[Beyerle et al, IA91]. Corresponding to these experimental data, the transition length,

LU (0.P5 num) is again small compared with the total length of the composite. In this

case, the predicted ultimate tensile strength Su = 485 MPa, is somewhat larger than the

measured value, Su = 430 MPa. The discrepancy is not understood.

4. THE FLEXURAL STRENGTH

Expressions for the flexural strength are derived from the regime where there is no

length dependence. The tensile side of the specimen is considered to have a stress/strain

curve represented by Eqn. (25). Consequently, strains associated with matrix cracking

are neglected. On the compressive side, it is assumed that the behavior is elastic and

characterized by the Young's modulus of the compositeE. The strain is given by

[Timoshenko and Goodier, 1970]

E = Rz (34)

where Rdenotes the curvature, and z the height ordinate (Fig. 5). Consequently, from

Eqn. (25),

7, = Z[1 + -I)°I2+nm+1)Z~+)(5
=2n! 1+n(m+l) (35)

where
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Z = Ef RZ/Sc; I = ZifSc

Force balance dictates the position of the neutral axis, h, (Fig. 5), such that

hj/h + (36)

where

g(m) = l+ n [2/(m+1T

and D1 is a damage variable reflecting the difference in Young's modulus in tension and

comprwssion

D, = 1-fEfjE/ (37)

The flexural strength is derived by evaluating the stress at the tensile surface and

equating to Eqn. (23) to give

Su = fScH(m,DI) (38)

where

H (m ',D ) = 4h ,)2  ( 21/n +l) - D 1  113- + G (m )
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and

G(m) = 1+3y _(-_ 2+n(m+1) _ _2n-1
'ýl, n ! +ln m~ [3 n 1~)] ( re 4 )n

The flexural strength again scales with the characteristic strength, Sc, and the fiber

volume fraction f, because the length independent failure regime is assumed to operate

in the tensile part of the beam. However, for short specimens, shear failure is more

likely than tensile failure and the present analysis is not valid.

The flexural strength is also explicitly dependent upon the damage variable, Di, and

the Weibull modulus, m (Fig. 6). As m --* c, the ratio of the flexural strength to the

ultimate tensile strength tends to the Young's modulus difference between tension and

compression, 2/(1 + 1 -- Di ). As also evident in tension, the higher the scatter in fiber

failure strength, the higher the normalized flexural strength. Furthermore, the higher

the damage variable, Dj, (i.e., the lower the ratio of the Young's modulus in tension to

that in compression), the higher the normalized flexural strength.

Flexural results for the same materials described above, summarized in Table IV,

indicate reasonable agreement between experimental and predicted values. However,

the SiC/CAS composite failed in shear. Apparently, tensile failure would have occurred

at similar stress if a longer specimen had been used. The relatively low flexural strength

predicted in the case of the SiC/C (C) composite is consistent with a similar

underestimation of the ultimate tensile strength. Indeed, by using the experimental value

of the ultimate tensile strength, the predicted flexural strength (430 MPa) is much closer

to the experimental value.
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5. CONCLUDING REMARKS

Expressions for the ultimate strength in tension and flexure have been derived in the

framework of global load sharing and single fiber pull-out, in terms of the two main

characterizing parameters 8c and Sc. A characteristic length, 5c, provides a dimension

that differentiates long and short specimens and establishes two diffct. nt regimes: A

length dependent ultimate strength for short specimens (L Z 5c) and a length

independent ultimate strength for long specimens (L 3 6c). The characteristic strength,

Sc, allows scaling of the ultimate tensile strength and flexural strength, provided that

the specimens are long. For short specimens, the bundle strength, Sb gives a good

measure of the ultimate tensile strength, independently of the interfacial shear stress T.

The Weibull modulus, m, gives a measure of the fraction D of broken fibers in an

elementary cell at the ultimate: for large specimens D = 1 - exp[2/(m + 1)].

Furthermore, the associated scatter enhances the ultimate strength of the composite.

In flexure, a parameter, D1 , has been defined that measures the loss of stiffness of the

tensile side. This effect, coupled with the degradation associated with fiber breakage

and pull-out, causes the normalized flexural strength to increase. Beyond the ultimate, a

new phenomenon takes place: localized fiber pull-out, wherein one matrix crack

becomes predominant. At this stage, there is a loss of uniqueness and localization may

occur [Hild et al., 19911 accompanied by a substantial load drop.
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TABLE I

Results and Predictions For LAS Matrix Composite

"T =2-3 MPa R= 8pm

L =25mmn L0=25mm

EXPERIMENTAL RESULTS

Sample # f m So (MPa) Su(MPa)

2369 (p) 0.46 3.8 1740 758

2369 (c) 0.46 2.7 1740 664

)0.44 3.9 1615 670

2376 (c) 0.44 3.1 1632 680

PREDICTIONS

L (amm) V (mm) Su (MPa) S. (MPa)
Sample # (T = 2 MPa) (T = 3 MPa) (T = 2 MPa) (T = 3 MPa)

2369 (p) 7.8 5.6 695 755

2369 (c) 8.7 6.5 710 792

2376 (p) 7.3 5.3 625 680

2376 (c) 7.8 5.7 635 700
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TABLE II

Results and Predictions For Carbon-Matrix Composites

EXPERIMENTAL RESULTS

L = 25mm L0 = 25mm R = 6.5 gm

Material f So (MPa) m I Su (MPa)

A 0.2 1165 4.5 10 290

C 0.2 1140 4.5 14 345

PREDICTIONS

Material L (mm) S. (MPa)

A 1.43 300

C 1.08 315

This volume fraction corresponds to the fiber volume fraction in the longitudinal direction.
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TABLE III

Experimental Results For CAS Matrix Composite

So 1050Ma LO= 10mm m =3.6

= 15 MPa R =7.5 pn f 0.37

L = 10mm

Su= 430 MPa
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TABLE IV

Flexural Experiments and Predictions

% (MPa)

Material
Experiment Prediction

SiC/CAS 620 635

SiC/LAS 1050 1080

SiC/C (A) 435 435

SiC/C (C) 455 395

KJS-Evans-26eTw-Z-TA-Unf Eq 92/03/03.11.28 AM .4/28/92 20



REFERENCES

Beyerle, D.S., Spearing, S.M., Zok, F.W. and Evans, A.G., 1991. "Damage, Degradation
and Failure in a Unidirectional Ceramic-Matrix Composite," ]. Am. Ceram. Soc., in
press.

Cao, H.C., Bischoff, E., Sbaizero, 0., Riihle, M. and Evans, A.G., 1990. "Effect of
Interfaces on the Properties of Fiber-Reinforced Ceramics," J. Am. Ceram. Soc., 73
16], 1691-1699.

Cao, H.C. and Thouless, M.D., 1990. "Tensile Tests of Ceramic-Matrix Composites:
Theory and Experiment, 1. Am. Ceram. Soc., 73 [71 2091-2094.

Cox, H.L., 1952. "The Elasticity and the Strength of Paper and Other Fibrous Materials,"
Br. J. Appl. Phys., Vol. 3, 72-79.

Curtin, W.A., 1991a. "Exact Theory of Fiber Fragmentation in Single-Filament
Composite," J. Mat. Sci., 26, 5239-5253.

Curtin, W.A., 1991b. "Theory of Mechanical Properties of Ceramic Matrix Composites,"
J. Am. Ceram. Soc., 74 11, 2837-2845.

Curtin, W.A., 1992, to be published.

Henstenburg, R.B. and Phoenix, S.L., 1989. "Interfacial Shear Strength Using Single-
Filament-Composite Test. Part II: A Probability Model and Monte Carlo
Simulations," Polym. Comp. 10 [5] 389-406.

Heredia, F.E., Spearing, S.M., Evans, A.G., Mosher, P. and Curtin, W.A., 1991.
"Mechanical Properties of Carbon Matrix Composites Reinforced with Nicalon
Fibers," J. Am. Ceram. Soc., in press.

Hild, F., Larsson, P.-L. and Leckie, F., 1991. "Localization Due to Damage in Fiber
Reinforced Composites," Int. J. Solids Struct., in press.

Hult, J. and Travnicek, L., 1983. "Carrying Capacity of Fiber Bundles with Varying
Strength and Stiffness," Journal de Mdcanique Thiorique et Appliqu6e, 2 [2], 643-657.

Jansson, S. and Leckie, F.A., 1991. 'The Mechanics of Failure of Silicon Carbide Fiber-
Reinforced Glass-Matrix Composites," Acta Metall., accepted.

Kachanov, L.M., 1958. "Time of the Rupture Process under Creep Conditions," lzv.

Akad. Nauk. S.S.R. Odt. Tekh. Nauk., 8,26-31.

Kelly, A., 1973. Strong Solids, 2nd edn, Oxford University Press, Chapter 5.

Krajcinovic, D. and Silva, M.A.G. (1982). "Statistical Aspects of the Continuous Damage
Theory," Int. J. Solids Structures, 18 17], 551-562.

KJS-Evans-26eTw-Z-TA-Unf Eq 92/03/03-11:28 AM .4/28/92 21



Lemaitre, J. and Chaboche, J.-L., 1990. Mechanics of Solid Materials, Cambridge
University Press. Cambridge.

McMeeking, R.M. and Evans, A.G., 1990. "Matrix Fatigue Cracking in Fiber
Composites," Mech. of Mtls. 9, 217-227.

Oh, H.L. and Finnie, I., 1970. "On the Location of Fracture in Brittle Solids-I Due to
Static Loading," Int. I. Frac. Mech., 6 3, 287-300.

Prewo, K.M., 1986. "Tension and Flexural Strength of Silicon Carbide Fibre-Reinforced
Glass Ceramics," ]. Mat. Sci., 21, 3590-3600.

Pryce, A.W. and Smith, P.A., 1991. "Modelling the Stress/Strain Behaviour of
Unidirectional Ceramic Matrix Composite Laminates," 1. Mater. Sci., submitted.

Rabotnov, Y.N., 1963. "On the Equations of State for Creep," Progress in Applied
Mechanics, Prager Anniversary Vol., McMillan, New-York, 307.

Schwartz, S., Lee, S. and Mosher, P., 1991. "Properties of Silicon Carbide Fiber
Reinforced Carbon Composite," 15th Annual Conference on Composite Materials and
Structures, ACerS, Cocoa Beach, FL, January 16-18, 1991.

Sutcu, M., 1989. "Weibull Statistics Applied to Fiber Failure in Ceramic Composites and
Work of Fracture," Acta Metall., 37 [2] 651--661.

Thouless, M.D. and Evans, A.G., 1988. "Effects of Pull-Out on the Mechanical Properties
of Ceramic-Matrix Composites," Acta Metall, 36 [31, 517-522.

Thouless, M.D., Sbaizero, 0., Sigl, L.S. and Evans, A.G., 1989. "Effect of Interface
Mechanical Properties on Pullout in a SiC-Fiber-Reinforced Lithium Aluminum
Silicate Glass-Ceramic," J. Am. Ceram. Soc., 72 [41, 525-532.

Timoshenko, S.P. and Goodier, J.N., 1970. Theory of Elasticity, 3rd edition, McGraw-Hill.

Weibull, W., 1939. "A Statistical Theory of the Strength of Materials,"
Ingeni6rsvetenskapakademiens, Handlingar Nr 151.

KJ5-Evans-26-Tw-ZeTA-Unf Eq 92/03/03°11:28 AM -4/28/92 22



FIGURE CAPTIONS

Fig. 1. a) Depiction of the recovery length LR when the density of matrix cracks
reaches saturation.

b) Fiber stress field Crf(T x) along a length LR for a reference stress, T, when

the fibers are intact.

c) Stress in the fiber when the fiber fails. Also shown is a visualization of the
pull-out stress (Yb when the matrix crack is located at x = 0 and fibers

break at different locations t.

Fig. 2. a) Non-dimensional ultimate strength, F, as a function of Weibull

modulus m.

b) Ultimate tensile strength Su, normalized by f So, as a function of Weibull
modulus [when So = 1500 MPa, T = 5 MPa, and Lo = 25 mm].

Fig. 3. Ultimate tensile strength as a function of the normalized total length of the
composite. A comparison is made with a fiber bundle prediction.

Fig. 4. Comparison between the upper and lower bounds for the transition between
short and long specimen behaviors with the actual intersection point, as a

function of the Weibull modulus m.

Fig. 5. Definition of the beam geometry in the case of flexure.

Fig. 6. Normalized flexural strength against Weibull modulus m, for three different
values of the parameter DI (0.1, 0.2 and 0.3).
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ABSTRACT

The fracture characteristics of an AI 20 3 /Al composite are examined. Measurements

of resistance curves and work of rupture are compared with predictions of a

micromechanical model, incorporating the effects of crack bridging by the Al

reinforcements. The bridging traction law is assumed to follow linear softening

behavior, characterized by a peak stress, Oc, and a critical stretch-to-failure. uc. The

values of ac and Uc inferred from such comparisons are found to be broadly consistent

with independent measurements of stretch-to-failure, along with the measured flow

characteristics of the Al reinforcement. The importance of large-scale bridging on the

fracture resistance behavior of this class of composite is also demonstrated through both

the experiments and the simulations.
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1. INTRODUCTION

The toughening of ceramics and intermetallics by ductile reinforcements has been

comprehensively studied, 1- 16 and has encompassed the range of materials indicated on

Table I. Three key factors regarding such toughening have emerged from these studies

as being in need of clarification and further understanding: i) The partitioning of the

plastic dissipation accompanying crack growth between bridging metal ligaments and a

process zone; ii) Control of interface debonding and associated relationships with the

dissipation occurring within the bridging ligaments; iii) The incidence and importance

of large-scale bridging (LSB) 17 and the resulting relationships between resistance

curves, basic constituent properties and the macroscopic load/deflection response of

the composite. This article addresses aspects of each of these issues through

experiments and analysis on A120 3 toughened with an Al/Mg alloy.

Experimental evidence presented for WC/Co9 and A120 3 /A12 has indicated that

both bridging and non-linear process zones can accompany crack growth and

contribute to the crack growth resistance. Trends in these two contributions with

microstructure are predicted to be very different.9 Consequently, it is important to

understand and model the separate contributions. Calculations indicate that the

dissipation is dominated by the plastically stretching ligaments,18 provided that the

crack surface tractions induced by the ligaments are relatively small compared with the

flow strength of the composite material within the process zone. The explicit

requirement for ligament dominance is given by the inequality:

fob - 3o, (1)

where f is the volume fraction of the ductile material, ab is the average crack surface

traction generated by the intact metal ligaments and (T/is a measure of the flow
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strength of the composite. For A120 3 /AI alloy composites with typical values of metal

concentration (f 0.2), Ob scales with the uniaxial yield strength of the alloy,15 o;, and

is relatively low (- 100 MPa), whereas of, which is dominated by the elasticity of the

matrix,9 is considerably larger (> 500 MPa). Consequently, Eqn. (1) predicts that the

dissipation should occur exclusively in the bridging ligaments. This material system

should thus provide a good experimental test of the crack growth predictions based on

bridging.

The A120 3 /AI interface is "strong,"19 but can experience ductile debonding in

constrained regions. It should thus be possible in this system to examine the influence of

controlled debonding on the fracture resistance. Furthermore, such debonding is expected

to result in large-scale bridging. Consequently, this material also provides an

experimental model for testing and validating the LSB analyses20,2 1 now available for

predicting effects of specimen geometry on the nominal fracture resistance.

When fracture resistance is dominated by plastically deforming ligaments, the

stress/stretch function associated with these ligaments Ob (u) is the key composite

property. A major objective of the present study is the determination of ab (u) and its

rationalization in terms of the properties of the Al alloy reinforcements, as well as the

interface debonding. In general, it has been found that a linear softening traction law

has applicability to ductile phase toughened materials, 22 governed by,

b = ((IUul) (2)

where u is the crack opening displacement, and ac and uc are constants to be

determined either by experiment or by calculation. Furthermore, Oc should be a

multiple of the uniaxial yield strength of the reinforcements Oo. This formulation has

lead to the following explicit results for the crack growth resistance under small-scale

bridging (SSB) conditions: i) a steady-state toughness r,, given by,21
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r'. = r(1 -f)+cu,f/2 (3)

where rm is the matrix fracture energy; and ii) a resistance prior to steady-state rR,

given by,21

r,(Aa) = +.(i-f)+cy~fu, [1.61-0.11'+0.5313]/4 (4)

where k = Aa/Ls, with Aa being the crack extension and L. the crack growth at the

onset of steady-state,

L, = 0.37Eu,/a, (5)

where E is Young's modulus for the composite. However, as already noted, when large-

scale bridging occurs, the nominal resistance may deviate substantially from the

SSB predictions. This issue will be a major focus of the present study.

2. MATERIALS

Composites used in this investigation were fabricated using the method developed

by Lange et al.23 In this method, the architecture of the metal is determined by the

choice of a pyrolyzable precursor. The precursor (a polymer fiber felt) is packed with a

high-purity alumina* slurry by pressure infiltration. After drying, the green body is

slowly heated to burn out the precursor and then sintered at 1550 0C for 30 min., leaving

an interconnected network of channels. The as-sintered A120 3 structure is visible on the

"Sumitomo AKP-50
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channel walls. This sintering schedule produces a fine-grained (- 4 pm) ceramic

preform, with a relative density > 99% (exclusive of the channels) (Fig. la). The preform

is then infiltrated with molten Al/4 wt.% Mg alloy, by squeeze casting, to produce the

composite. The alloy had been heated to 780°C and squeeze cast at a pressure of

170 MPa. The composite billets were typically - 30 mm in diameter and - 5 mm thick.

Microstructural examination of the composite revealed a relatively uniform network of

randomly oriented cylindrical aluminum fibers, - 19 gtm in diameter. The metal volume

fraction, measured by quantitative metallography, was f = 0.28 (Fig. 1b).

The Al channels were devoid of porosity and were bonded to the A120 3 matrix. The

A120 3 grain boundaries appeared devoid of grain boundary phases, as ascertained in

the transmission electron microscope (TEM) using dark field, through focus and the

EDS X-ray technique. Bright field TEM indicated no detectable segregation and no

interphase formation at the metal/ceramic interface. The aluminum alloy was single

phase with magnesium in solid solution.

3. MEASUREMENTS AND OBSERVATIONS

3.1 Mechanical Testing Procedures

Mechanical test specimens were cut from the composites, surface ground with

diamond impregnated wheels and notches cut using thin (150 4am) diamond blades.

Polished surfaces for crack length measurements were prepared using standard

metallographic techniques. Two types of mechanical test were performed to obtain the

fracture resistance curves and the work of rupture. Resistance curve measurements were

made upon polished, notched flexure beams (3.6 mm x 3.6 mm x 20 mm), in accordance

with ASTM standards.24 Specimens were prepared with notch depths of 0.5, 1.0 and

1.5 mm, representing notch depth to specimen height ratios, ao/W, of 0.14, 0.28 and

0.42. Two flexure test procedures were used: 1) in situ inside a scanning electron
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microscope, and 2) within a stiff servohydraulic test fram&e using a traveling optical

microscope to measure crack lengths. Tests were conducted at a displacement rate of

0.2 gtm/s.

The steady-state fracture properties were characterized using work-of-rupture

tests.25,26 This test involved measurement of the work required to stably propagate a

cack across a chevron-notched flexure specimen. To ensure stable crack propagation,

the specimen width was twice the specimen height ("double-width specimens"). 25,26

Furthermore, a short pre-crack (- 100 gtm) was introduced at the notch using a Vickers

indentor with a load of 200 N. Corresponding tests were conducted on fully dense

A120 3 specimens, to allow the toughness enhancement attributable to the metal

reinforcements to be evaluated.

The flow properties of the bulk Al/Mg alloy were measured from dog-bone tensile

specimens machined from squeeze cast ingots. Hardness measurements were also made

with a nanoindentor on both the bulk Al-Mg alloy and the reinforcements within the

composite, in order to compare their flow properties.

3.2 Fracture Observations

In situ and post fracture observations conducted in the SEM provided insight into

the crack growth mechanism, as well as the plastic stretching of the Al ligaments.

Observations performed in situ, shown at four different crack openings in Fig. 2,

confirm the existence of a plastic stretching mechanism. Investigation of the resultant

fracture surfaces by SEM revealed primarily transgranular cleavage of the A120 3 and

extensive plastic deformation of the Al. The stretch to failure of - 60 ligaments was

measured using stereo measurements on SEM micrographs. The Al ligament orientation

wa3 found to have a strong effect on both the debonding behavior and the plastic

MTS Model 810

KJS-Evans-23.Mf.-MiTA-MtI Tgh Crm 91/11/05.10:00 AM.6/30/92 7



stretch to failure. Ligaments aligned perpendicular to the crack plane (Fig. 3) exhibited

debonding, on the order of the fiber diameter, 2R, and a large plastic stretch to failure:

uc /R = 3.5. Inclined ligaments partially debonded (around that segment of the

interface experiencing normal tension, Fig. 4a), and failed at a relatively small plastic

stretch. Ligaments parallel to the crack plane often debonded completely and

experienced negligible plastic deformation (Fig. 4b). A summary of plastic stretch

measurements (Fig. 5) indicates a mean value, u,/R = 2.9, with a standard deviation

of ± 0.9.

Closer examination of the debonded surfaces provided insight into the debond

mechanism and the role of matrix microstructure. The A120 3 side of the debonded

interface (Fig. 6a) reveals the presence of a network of Al. The network cell size is

similar to that of the matrix grains and the cell centers are frequently situated at triple

grain junctions on the A120 3 surface. The debonded metal exhibited a corresponding,

distorted, dimpled surface (Fig. 6b). These observations indicate that debonding

occurred by a ductile process involving void nucleation at triple grain junctions ot the

matrix surface, followed by plastic void growth and coalescence within the metal, near

the interface. This mechanism of interfacial fiacture is consistent with earlier studies

which indicate that the A120 3 /A1 interface is "strong." 19

The effect of matrix mnicrostructure on debonding was explored by heat treating

some of the A120 3 compacts at 1600'C for 30 h, to induce substantial grain growth in

some regions* and thus reduce the number of triple grain junctions at the channel

surfaces. After infiltration and fracture, the debonding in these regions was found to be

negligible (Fig. 7), whereas the debonding in the fine-grained region was essentially the

same as that in the original fine-grained composite (c.f. Fig. 3). The plastic stretch of the

reinforcements in the coarse-grained region was correspondingly lower uc/R = 1.

"These heat treatments produced a bimodal distribution of grain sizes: a result of abnormal grain growth.
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3.3 Properties of Al Alloy

Tensile stress-strain curves for the bulk Al-Mg alloy (Fig. 8) indicated a yield

strength of - 70 MPa and an ultimate tensile strength of - 180 MI'a. The reduction in

area was approximately 20%. Nanoindentation results at a load of 5rnN indicated

similar hardness levels for the bulk aluminum alloy (1.1 ± 0.1 GPa) and for the

reinforcements in the composite (1.3 ± 0.2 GPa). The relatively large values of hardness

(compared to the uniaxial yield strength) reflect the indentation size effect that occurs in

the nanometer range.28

3.4 Fracture Resistance

The resistance curves for the composite (Fig. 9) have three characteristic features:

i) an initial fracture resistance, Ko = 3 MPa\m, similar to the fracture toughness of the

matrix, ii) an intermediate region wherein the fracture resistance increases gradually,

and iii) a final region in which the resistance increases rapidly. The latter region

commences at smaller crack extensions for specimens with deeper notches. Such

behavior is characteristic of large-scale bridging (LSB).1 7

The work of rupture of the composite was, WR = 400 + 50 Jm-2 and that of the fully

dense Al20 3 t was WR = 25 ± 5 Jm"2 . The toughness enhancement AWR attributed to

the metal reinforcements, re-expressed in the non-dimensional form,1 ,15

X = AWR/fOo R (6a)

becomes

X = 2.0_±0.3. (6b)

t Processed similarly and having comparable grain size.
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The steady-state fracture resistance Kss of the composite can then be calculated using

K= WR (7)

where E is the composite Young's modulus. Taking E = 300 GPa, Eqn. (7) gives the

result K., - 11 MNPa "m, significantly less than the nominal LSB fracture resistance

measured at large crack extensions (Fig. 9).

4. MODELING

4.1 Bridging Tractions

The traction function ab(u) for the ductile Al ligaments was obtained using two

methods. In the first, the function was assumed to obey a linear softening law (Eqn. 2).

Selection of the peak stress parameter, (5c, and the stretch-to-failure, uc, was based on

the following procedure: i) The stretch-to-failure was made to coincide closely with the

SEM measurements (Uc/R = 2); ii) The maximum stress was then selected such that the

computed R- curve (described in Section 4.2) for one of the specimen geometries was in

good agreement with the experimental data. This fit specifies both Urc and uc in Eqn. (2);

iii) The R-curves for the other geometries were computed and compared with the

experiments. As an additional consistency check, the area under the normalized Ob(U)

curve was evaluated and compared with the value ui'; obL 'ir Zom the work-of-

rupture tests (Eqn. 6b).

In the second method, the traction function was computed using a geometric

necking model29 by assuming cylindrical bridging ligaments oriented perpendicular to

the crack plane (Appendix). The shape of the ligaments during deformation was taken

to be a paraboloid of revolution, with the nominal stress computed from Bridgman's

KJS-Evans-23.Mf-Mt-TA-Mtl Tgh Crm 91/11/05,10:00 AM.6130/92 10



solution 30 for a necking bar. This calculation requires a flow law for the Al ligaments

applicable at the large plastic strains that occur during rupture. The commonly used

Ramberg-Osgood law typically overestimates the flow stress at large strains, because

hardening is limited by the development of a stable dislocation cell structure.3 1

Consequently, a more appropriate flow law at large strains is, 32

a = yi-me"P] (8)

where as is the saturation strength, with m and n being coefficients that reflect the

hardening. A fit of Eqn. (8) to the data from Fig. 8 gives the parameters as = 300 MPa,

m = 0.75 and n = 5.8. The stress/stretch relationships for various debond lengths and

their influence on the toughness enhancement, predicted using Eqn. (8) in the geometric

necking model (Appendix), are shown in Fig. 10.

4.2 Fracture Resistance

A cohesive crack model with linear softening has been used (Eqn. 2) and solved by

an integral equation method. 20,21 The relevant geometric parameters are shown in

Fig. 11. The model considers a matrix crack of length a, growing from a notch of length

a0 in a flexure specimen of width w. The bridging tractions are denoted fab(X), where x

is the distance from the tensile face of the beam. The applied load is represented by the

stress, Caa(x), that would exist on the fracture plane in the absence of the crack,

represented by,

aa(x) = 6M(1-2x/w)/w 2 b (9)

where b is the specimen depth and M is the bending moment. The net tractions p(u)

acting on the crack face are assumed to follow a linear softening law of the form
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p(u) = fa(Y1-u/uJ) (10)

Thereafter, the crack opening profile can be related to the applied load by an integral

equation, 20 ,2 1 which leads to an expression for the stress intensity factor at the crack tip,

2 raH(x/a, a/w)

y1tJ 0 = -ao.xi - p~u(x;))dx (i

where H is a wright function defined in Refs. 20 and 21. Using the criterion for matrix

crack propagation, Ktip = K0 (the matrix toughness), the crack growth resistance has

been simulated by solving the integral equation for Ktip, as elaborated below.

4.3 Comparison Between Theory And Experiment

Initially, the experimentally measured resistance curve for a notch depth,

ao /w = 0.28, was compared with predictions for a range of ac/ 0o. Coincidence was

obtained for a3c/Oo = 2.12 (Fig. 9). Further comparisons for other notch geometries

(ao/w = 0.14 and 0.42), made using the same value of ac /(TO, indicate good agreement

over the entire range of crack extension (Fig. 9). In addition, the steady-state toughness

enhancement calculated from the linear softening traction law (X = 2.1) is in accord with

the value measured from the work of rupture tests (X = 2.0 ± 0.3). The consistency

between the various measurements and predictions provides confidence in the utility of

the linear softening traction law, as well as the key material pararneters, Oc and uc-

A discrepancy that arises from the comparison between measurement and

calculation is concerned with the predictions of the geometric necking model. The

model predicts a peak stress and a toughness enhancement consistently higher than

those found by experiment for debond lengths that give the appropriate range of uc/R
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(Fig. 10). Notably, the peak stress should not be lower than the (unconstrained) ultimate

tensile strength of the Al alloy (Cc = 2.6 Go). Yet, a lower value of the peak stress is

inferred from the resistance curves (Cc = 2.1 0o). The discrepancy is believed to be

attributable to the random orientation of the ligaments, which significantly lowers the

limit load. 32 This effect, in turn, reduces the steady-state toughness enhancement

associated with the metal reinforcements.

5. CONCLUSION

The close comparison between theory and experiment revealed by the present study

has several implications. The primary mechanism of toughening by ductile

reinforcements can now be confidently attributed to plastic dissipation by stretching

between the crack surfaces. Consequently, the important microstructural variables can

be defined and evaluated, especially the requirement for controlled debonding.

The importance of large-scale bridging in metal/ceramic composites has been

vividly demonstrated. A major implication of LSB is that the very large specimens

required to satisfy semi-infinite specimen geometry assumptions are impractical and

would hinder the development of new materials. Furthermore, it is anticipated that

applications for these composites will be in small, complex components, for which the

fracture resistance measured from semi-infinite specimens would be of little use. The

approach outlined here demonstrates a practical alternative wherein determination of

the stress/stretch relationship of the ductile reinforcements from tests conducted on

small, simple specimens combined with computer modeling allows the prediction of

fracture resistance behavior of finite sized components.

Finally, it is apparent that a traction law applicable to composites reinforced with

ran.lomly oriented metal channels cannot be simulated using simple geometric models of

necking ligaments. Experimental evaluation of this law is preferred.
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TABLE I

Ductile Reinforcement Toughened Ceramics and Intermetallics

MATRIX REINFORCEMENT REFERENCES

A1203 Al 1-4

B4C Al 5

WC Co 6-9

TiAI Nb 10

MoSi 2  Nb 11,12

NiAI Mo, Cr 13

AIN Al 14
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APPENDIX

The effect of debond length on the stress/stretch relationship for a bridging ligament

is estimated using the geometric model described by Mataga.29 Here, the ligaments are

taken to be cylindrical in shape and oriented perpendicular to the crack plane.

Debonding is assumed to occur instantaneously (at u = 0), such that the debond length,

d, remains fixed during stretching. The profile of the ligament is assumed to be

described by a paraboloid of revolution. The minimum ligament diameter, 2r, and the

local radius of curvature are then evaluated in terms of the crack opening displacement

by requiring the volume of the ligament to remain constant. This leads to an expression

for the crack opening in terms of the current ligament geometry,

u/R = 2(d/R)[(1- 4 p/3+8p2/15)'-1] (Al)

where

p = 1-r/R (A2)

The nominal stress depends on the current load bearing area of the ligament (as

manifest in the parameter p), the work hardening behavior of the metal and the plastic

constraint resulting from the ligament profile. Utilizing Bridgman's solution 30 for the

average nominal stress in a necking bar leads to the result,

0/00 = (1-p 2)[l+h 2/R 2 p(l-p)]tn[l+p(1-p)R2/h 2] (A3)
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where 2h is the current "gauge length" of the ligament,

2h = 2d+u, (A4)

Combining these results with the flow law for the Al alloy (Eqn. 8 in the text) gives the

ab(U) predictions plotted on Fig. 10a.
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FIGURE CAPTIONS

Fig. 1. a) Ceramic perform, prior to metal infiltration.

b) Composite microstructure, after metal infiltration.

Fig. 2. Bridging Al ligaments in the composite at four different crack openings.

Micrographs taken in situ under load.

Fig. 3. a) Composite fracture surface in area where fibers are aligned perpendicular

to fracture surface.
b) High angle (850) tilt view illustrating plastic stretching of ligaments.

Fig. 4. Composite fracture surface in area where fibers are (a) inclined with respect to

crack plane, and (b) aligned parallel to the crack plane.

Fig. 5. Cumulative distribution of plastic stretch to failure of Al ligaments.

Fig. 6. a) View of debonded A12 0 3 surface, with cell-like Al network centered

around triple-grain junctions.

b) View of debonded Al surface, with ductile dimples corresponding to the
A120 3 grain size.

Fig. 7. Fracture surface of composite produced from large-grained A120 3 preform.

Note the absence of debonding and the reduction in plastic stretch.

Fig. 8. True stress/strain curves from experimental data and calculated using the
Voce law.31

Fig. 9. Comparison of measured and computed fracture resistance curves for three

notch depths, ao/w.

Fig. 10. a) Linear softening stress/stretch relationships used in modeling of
resistance curves and predictions of the geometric necking model for

various debond lengths.

b) Comparison of steady-state toughness enhancement from the geometric

model and the experimental measurements.
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Fig. 11. Schematic representation of specimen geometry.
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ABSTRACT

The present study examines the strength characteristics of brittle materials

reinforced with ductile metal particles. The strength enhancement in such

materials is derived from a process of crack bridging by the particles. The study

focuses primarily on the role of the bridging traction law: the relation between the

crack surface traction and the crack opening displacement. Two types of bridging

traction laws are considered: one exhibits linear softening, and the other is

rectilinear. The results are expressed in terms of two non-dimensional parameters

that account for the effects of the flaw size and a variety of material properties,

including the elastic modulus, the matrix toughness, and the parameters

characterizing the traction law. It is shown that such composites can be substantially

more flaw tolerant than monolithic ceramics. This flaw tolerance is manifested as a

narrowing of the strength distribution for a prescribed flaw size distribution.

Finally, the role of the interface debond length is examined. A geometric necking

model is used to derive the relevant bridging traction law which, in turn, is used to

evaluate the composite fracture properties. It is shown that there exists optimal

debond lengths at which the composite strength is maximized. In contrast, the

steady state toughness increases monotonically with debond length. The

implications of these results on the design of composite microstructures are briefly

described.
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1. INTRODUCTION

Ductile particles can substantially toughen a brittle material [1-5ij. During crack

extension the particles bridge the crack and thus reduce the stress intensity at the

crack tip (Fig. 1(a)). As a result, the strength of the composite may exceed the strength

of the matrix. The composite strength depends on various factors, including the

matrix toughness, the initial flaw size, the crack surface tractions exerted by the

particles, and the specimen geometry. In this study, emphasis is placed on the effects

of the bridging traction law: the relationship between the crack surface traction, 0, and

the crack opening displacement, S.

The bridging traction law appropriate to ductile particles can be determined

either through a micromechanical analysis [6-81, or by experimental measurement

[4]. Two typical oF-8 relations for ductile reinforcements are shown schematically in

Fig. 2: one corresponds to systems with relatively strong interfaces (a), and the other

to systems with relatively weak interfaces (b) [4]. For modeling purposes, the curve

in (a) can be approximated by a linear softening law and the curve in (b) by a

rectilinear law, as indicated by the dashed lines. The approximations can be

formally written as

(Y/Cy = X 1, 0<8/80 <1
C/o X=0, 8/50o>1 (la)

for the rectilinear law, and

0/00 = X = {ti 0, 0 /Jo1 (0b)
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for the linear softening law. Here GO is the maximum surface traction exerted by the

particles: it is a function of the yield stress and volume fraction of particles, and the

interface debond length. Furthermore, 8o is the crack opening displacement at

which the tractions fall to zero: it, too, is a function of the interface debond length, as

well as the ductility and size of the particles. It is of interest to note that there are

only two parameters that characterize these laws (CO and 5o), making the laws

amenable to modeling studies of the type described below.

The resistance to crack growth GRin this class of composite, obtained using

the J-integral, can be expressed as

8 t /8.

GR = ro + CoBo fJX(s)ds
0 (2)

where FI" is the matrix toughness and 5t is the crack opening displacement at the

notch root (Fig. 1(a)). The initial (unbridged) crack starts to grow when GR reaches

1`. As it grows, a bridging zone develops in its wake, causing an increase in the

resistance to further growth (Fig. I(b)). Once St reaches 8o, particles begin to rupture

at the notch root. Particle rupture continues with crack extension until a

steady-state bridging zone length is obtained. The corresponding steady-state

fracture resistance, Fs, is evaluated by setting 8t = 50 in Eqn. (2), yielding the results:

Is = Fo + (000 (3a)

for the rectilinear law, and

Fs = 1"0 + CoFo/2. (3b)
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for the linear softening law.

Although rs is a characteristic fracture property of the composite, it cannot be

used directly to evaluate the composite strength since the conditions for crack

instability are often met before steady state conditions are attained. Indeed, when

the initial flaw size is small compared to the steady state bridging zone length, the

strength enhancement attributable to the particles is negligible even though the

toughness enhancemcnt may be substantial. The main objective of the present

article is to examine theoretically the relations between the traction law appropriate

to ductile reinforcements and the strength and reliability of such composites,

incorporating the effects of finite crack sizes. For simplicity, attention is focused on

the rectilinear and linear softening traction laws.

The remainder of the paper is divided into four parts. Section 2 provides

background on the mechanics of cracks bridged by ductile particles. In Section 3, the

trends in composite strength with flaw size and the various materials properties

(including elastic modulus, matrix toughness and the parameters characterizing the

traction law) are presented. Section 4 focuses on the issue of reliability. Here the

results of Section 3 are combined with a statistical description of the flaw size

distribution in order to examine the changes in the strength distributions that arise

from crack bridging. The role of interface debonding is examined in Section 5. For

this purpose, a geometric necking model is used to derive the traction law for a

prescribed debond length, which, in combination with the calculations of Section 3,

are used to predict variations in strength with debond length. Finally, Section 6

provides remarks on some of the limitations and implications of the present results

for the design of composite microstructures.
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2. BASIC MECHANICS

Consider a mode I, plane strain center crack in a large composite body subject

to a remote uniform tension, U, as depicted in Fig. 3. The length of the initial

unbridged crack is 2a0 and the total crack length is 2a.

2.1 Small Scale Bridging (SSB)

When the bridging zone length L is much smaller than both the crack length

and the in-plane specimen dimensions, the problem is one of small-scale bridging

(SSB). The crack can then be taken as semi-infinite, such that the effect of the

applied load and specimen geometry can be represented by the applied stress

intensity K or energy release rate G: the interplay between crack bridging and finite

geometry can be neglected. In this case, the curves characterizing the increase in

fracture resistance with crack extension (so-called R-curves) are material properties.

A comprehensive series of SSB solutions for G and L in composites with rectilinear

and linear softening bridging laws have been documented elsewhere [10].

Under SSB conditions, the composite strength S is attained when GR reaches

its steady state value, Is, whereupon the strength is given by the usual relation

S= Es 1 1/2

Ina, J (4)

where E is the plane strain modulus of the composite and the crack length at

fracture is taken to be equal to the initial flaw size, ao. Combining Eqns. (3) and (4)

leads to expressions for the normalized strengths

S [i+X 11/2

L 1 (5a)

7F:MS26(February 12, 1993)/9.20 AM/mef
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for the rectilinear law, and

Go Ir (X(5b)

for the linear softening law, where a and X are the non-dimensional parameters

aZ = CYa = F

8o OF ao5o (6)

Alternatively, these results can be expressed in terms of the matrix strength, So,

so 
1/2

L oMJ (7)

assuming that the flaw size and elastic properties of the matrix are the same as those

of the composite. Combining Eqns. (4) and (7) yields the result

S _ _

So (8)

for both the rectilinear and the linear softening traction laws.

The non-dimensional parameters a and X, have the following physical

meaning. The parameter a is a normalized flaw size: the normalizing parameter,

80ER/0, is a material length scale that is proportional to the steady state bridging

zone length. Using order of magnitude estimates of the various material properties

(80 - 10 to 100 gm, F - 100 GPa and G - 10-100 MPa) gives values of 8oEF/o, that

7F:MS26(February 12, 1993)/9:20 AM/nef
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range between -1 and 100 mm. Consequently, for virtually all problems of practical

interest, a lies in the range 0 < a < 1. The other parameter, 'A, is a normalized

matrix toughness: the normalizing parameter, ao85, is proportional to the energy

dissipated through plastic deformation of the ductile particles. Alternatively, the

inverse, 1/4., can be viewed as a measure of the toughness enhancement attributable

to the particles, since the enhancement in steady-state toughness is

ITFs- Fo)/Fo = ri/ X (15)

where T is of order unity (T1 = 1 for the rectilinear law and TJ = 1/2 for the linear

softening law). Using the values quoted above, YOo0 lies between 102 and 104 Jm-2.

Furthermore, the toughness of most glasses and ceramics is 10 - 10 to 100 JM- 2,

putting A. in the range - 0 < A < 1.

2.2 Large Scale Bridging (LSB)

When the bridging zone length is comparable to either the crack length or the

in-plane specimen dimensions, the reduction in stress intensity due to the bridging

particles is a function of the applied stress intensity as well as the specimen

geometry and size [121. In this regime, the fracture resistance curve is not a material

property. However, it will become clear shortly that the resistance curve is not

essential in deriving the composite strength, and thus the shortcomings of such

curves in this regime are not a major concern.

Using a stress intensity approach, the relation between the applied stress and

the current crack length for the crack configuration shown in Fig. 3 can be expressed

as[111

7F:MS26(February 12. 1993)/9:20 AM/mef
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+ . af a(x) dx
ý= x' (9)

where G(x) is the stress distribution in the bridging zone, x is the distance from the

crack center, and 21 is the length of the unbridged portion of the crack. Prior to

particle rupture, 21 is equivalent to the initial flaw size, 2ao; following particle

rupture I < ao. For convenience, the traction law is inverted and written in the

generic form

8/5o= W(Y/0o) (10)

where WjJ is a continuous or piece-wise continuous function of O /ao. The

displacement 8 consists of two components: one due to the remote tension and

another due to the bridging stress [111. When summed together, the total

displacement is

a - s•j-: a S2
x~2 2 4 a() va 2 -x + ýa -s

E e2 - a _S(11)

Combining Eqns. (9) to (11) and introducing appropriate normalizations yields the

governing equation for the bridging traction distribution

V(O(R))+ 4(a-• .ý4R(t(,tdt=4 ýX a. /-oR5
a 0 / a  , 0  (12a)

where R is the normalized position in the bridging zone (Z = x/a); 0 is the

normalized bridging traction distribution:

7F:MS26(February 12, 1993)/9:20 AM/mef
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Go (12b)

and Q is a singular kernel,

.14fn 2 + I-t 2 
_2 41i

2t 1t 2  1t 2  0 (20)

Equation (12) is solved either analytically or numerically (depending on the nature

of the traction law) and the resulting traction distribution O(R) inserted into the

non-dimensional form of Eqn. (9):

U ao + 2t dtCo ga F a!1/a0lt
I a t2  (13)

to obtain the remote stress corresponding to each value of crack length. The

composite strength, S, is then identified from the maximum point on the ;5/ a.

versus a/ao curve.

It will be shown momentarily that the composite strength can be attained

either before or upon the onset of particle rupture, depending on the nature of the

traction law and the values of the parameters a and X. When the strength is

attained prior to particle rupture (as it always is for the linear softening law), the

lower limits on the integrals in Eqns. (12) and (13) are replaced by ao/a. When the

strength is attained at the onset of particle rupture (as it somnetimes is for the

rectilinear law), the variation in I with the crack length, a, must be evaluated in

order to solve these integrals. This is accomplished by setting S = &.o at x = I in

Eqn. (11).

7F:MS26(February 12. 1993)/9:20 AM/emef
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3. COMPOSITE STRENGTH

3.1 Rectilinear Traction Law

Substituting the rectilinear bridging traction law (Eqn. l(a)) into Eqn. (13) and

integrating yields the stress-crack length relation:

Xa. + 2Cos-'(a. /a)

GO F7tao a i (14)

over the range 1 < a/ao < ac/ao, where ac is the crack length at which particle rupture

begins (i.e., St reaches S.). In this regime, the maximum value of U / Yo occurs at a

crack length, af, obtained by setting

d( /ao) 1 X a 2, 0  -o

d(a/a,) 2a-f a a•a f raf 1-(ao/af)2  (15)

The solution to Eqn. (15) is

af/a 0  = [ /(8oa/it)2 + 1 - 8a / nX . (16)

Substituting this result into Eqn. (14) gives the strength of the composite, i.e. a = S.

It should be emphasized that this result is valid only when the stress maximum is

attained prior to particle rupture i.e. af _• ac.

In the other regime (ac < af), the maximum stress is attained at the onset of

particle rupture. The value of ac is obtained be setting S = 80 at x = ao in Eqn. (11),

resulting in

7F:MS26(February 12, 1993)19:20 AM/mef
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2 40OaC } ( 0 a)+1t 2

8° :_="ac'-(a/a)- J In
a, 1-(ao/ac)2 

- (17)

The integral in Eqn. (17) Ldfl be worked out in a closed form

"f In t2dt=2 i-(a/a)2  2-sin- -- a
ao/ac t2 a2/a) 2 a. ac2 (18a

which, in combination with Eqn. (17), leads to the result

40(a 0aaU -2 1~aa)Ij -1 si-__ 0taait L2 ac ac ac (19)

Inserting Eqn. (14) into Eqn. (19) and using the identity cos-ly = n/2 - sin'),, gives

4•- ac a° 8a -a° = 1
Nr ao ac nt ac (20)

This equation defines ac/ao in terms of only two parameters: a and X. The strength

is then obtained by solving for ac/ao and substituting the result into Eqn. (14).

Three stress-crack length curves showing the effects of particle rupture are

presented in Fig. 4(a). The effects of the parameters Cc and X on the critical condition

wherein af = ac (obtained from Eqns. (16) and (20)) are presented in Fig. 4(b).

Evidently, the stress maximum is attained prior to particle rupture only when the

initial flaw size is small: a :< 0.10 to 0.15. This result is relatively insensitive to X

over the relevant range of X.

7F:MS26(Febnrary 12. 1993)/9:20 AM/reef
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The preceding results for the composite strength can be conveniently

summarized in the form

S f = + 2 Cos-
0o 7M it (21)

where

ao/af, if af < ac

= ao/ac, if af > ac. (22)

For composites of this type, X is typically much smaller than unity.

Conseqiiently. a first order estimate of the composite strength can be obtained by

setting X = 0. In this limit, af -- 00, whereas ac remains finite; thus the second

condition in Eqn. (20) applies. Combining Eqns. (20) and (21) yields the simple

analytical result

S 2cosl(eR/8s)

0o 7r (23)

The relevant results are presented in Fig. 5. The trends in strength, S/0 0 ,

with flaw size, a, are shown in Fig. 5(a) for values of X ranging from 0 to 0.5. (The

curve corresponding to X = 0 is computed using Eqn. (23)). The same results are

presented in an alternate form in Fig. 5(b). Here the composite strength is

normalized by the matrix strength, So, and plotted against the square root of the

normalized toughness: (rs/ro)1/ 2. The latter normalizations are selected so that the

prediction of the SSB solution (Wx = oo) is linear and exhibits a slope of unity

(Eqn. (8)). The remaining curves correspond to values of a ranging from 0.05 to 2.

7F:MS26(February 12. 1993)/9:20 AMImef
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In the regime cc !ý 0.5 (which is relevant to most composites of interest), the SSB

solution strongly overestimates the composite strength, demonstrating the need to

account for the LSB effects. Evidently, S/So varies almost linearly with (Fs/o 0 )1/ 2 for

all values of (X. However, the degree of strength enhancement (characterized by the

ratio S/So) is considerably smaller than (Fs/Fo)1 / 2 for small values of cc.

3.2 Linear Softening Traction Law

The effects of bridging on the composite strength for the linear softening

traction law have been evaluated following the approach outlined in the preceding

section. Two salient differences exist. Firstly, there is no analytical expression for

the composite strength for the linear softening law. The relevant solution for the

stress - crack length relation over the range 0 < a/ao < ac/ao can be written as

U a + _2 td

0 0 a a ,,, /a (2 4 )

(This result is equivalent to Eqn. (13) with the lower limit on the integral replaced by

ao/a.) Here the integral must be solved numerically since no analytical solution

exists. Secondly, the maximum stress is always attained prior to particle rupture, i.e.

no finite values of a and X satisfy the equality af = ac. As a result, it is unnecessary

to calculate the stress - crack length relation for the regime in which a/ac > 1:

Eqn. (24) can be used in all cases. Three stress - crack length curves for this traction

law are shown in Fig. 6. The composite strength is obtained by identifying the

maximum points on a family of such curves, each corresponding to a specified

combination of a and X.
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The trends in the strength ratio, S/a 0 , with flaw size, cX, and the strength

ratio, S/So, with toughness, (ls/Fo)1/ 2 are shown in Fig. 7. Qualitatively, the curves

exhibit features similar to those corresponding to the rectilinear traction law (Fig. 5).

The main difference between the two is that the linear softening law leads to lower

strengths for small values of a coupled with large values of X. In the limit of SSB,

(Cx >> 1), the strength depends only on the toughness ratio, rs/o 0 , not on the form of

the traction law.

The curves in Fig. 7 can be well represented by the fitting formula

00 -- )[ - 6exp)] (25)

When the results are normalized by the matrix strength, So, Eqn. (25) becomes

S I +c (lX Flex( 06
FE, T [ (- 10 ý }J. (26)

The error in Eqns. (25) and (26) over the practical range of 0.02 < X 5 0.2 and

0 < a < 1 is less than 5%.

4. RELIABILITY

In addition to improving the strength and toughness of ceramics, ductile

particles can, in some instances, improve the reliability of the materials. Reliability

here refers to the sensitivity of the strength to the flaw size, rather than the strength

itself. One manifestation of this sensitivity is the breadth of the strength

distribution that corresponds to a prescribed flaw size distribution: materials whose

"7 F:MS2•.r"'°,y 12, 1993)/9:20 AM/mef



16

strengths are sensitive to flaw size tend to exhibit broader strength distributions. In

this context, most monolithic ceramics are unreliable since their strengths are

sensitive to flaw size, i.e. strength scales with ao"1/ 2 . Consequently, flaws introduced

during processing or in service can substantially degrade their strength. In contrast,

materials that exhibit R-curve behavior tend to exhibit narrower strength

distributions 16 ,17, an attractive feature for the design of structural components.

To demonstrate the degree of flaw sensitivity of ductile particle reinforced

ceramics, the results of Fig. 5(a) (S/ao vs. cc) have been re-plotted in Fig. 8(a) using

logarithmic coordinates. For monolithic ceramics that do not exhibit R-curve

behavior, such plots are linear with a slope of -1/2. In contrast, for the composites,

there are three regimes of behavior, governed mainly by the value of a. (i) When

the flaws are very small (a _< 0.01), the strength is essentially dictated by the matrix

toughness and is given by

a0 o \cx, (27)

In this regime, the relation between log S/0(a and log a is linear with a slope of -1/2,

as it is for monolithic ceramics. This trend is shown by the dotted lines on the left

side of Fig. 8(a). (ii) For very large flaws (a > 1), the relationship is again linear,

only now it is dictated by the steady state composite toughness. In this case, the

strength is obtained from the SSB solution (Eqn. (5a)). This trend is shown by the

dashed lines on the right side of Fig. 8(a). (iii) In the intermediate regime

(particularly around 0.03 < a < 0.3), the sensitivity of strength to the flaw size is

substantially lower, as manifest in the reduction in the slope of these curves.

One parameter that can be used to characterize the degree of flaw sensitivity

of such composites is the slope, -d[log (S/(o0 )]/d[log ax]. This parameter can vary
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between 0 and 1/2, with 0 corresponding to the most desirable behavior (i.e. flaw

insensitive) and 1/2 to the least desirable (i.e. flaw sensitive). Fig. 8(b) shows the

variation in this parameter with flaw size for the results of Fig. 8(a). The figure

shows how the flaw sensitivity approaches 1/2 for very short and very long cracks,

but drops to substantially lower values for intermediate crack sizes. With, the

intermediate regime, the composites would be expected to be significantly more

reliable than monolithic ceramics.

The results of Figs. 5 and 7 can also be used to describe the strength

distribution corresponding to a prescribed flaw size distribution. In monolithic

ceramics, a convenient empirical description of the flaw size distribution is given by

the Weibull function

P = I-exp-V(ao 
mY

Vo a ) (28)

where P is the cumulative probability of flaws having size greater than a in an

elemental volume, V, m is the Weibull modulus, and Vo and ao are the reference

values of volume and flaw size, respectively. The corresponding strength

distribution is obtained by relating the crack size to the strength via the Griffith

equation. For ductile particle reinforced ceramics, Eqn. 28 can be re-expressed in

terms of the normalized flaw size, a, whereupon

P = 1 - exp i
Vo a (29)

where ao is the reference flaw size, ao, normalized by 8o E/0 0 . Equation 29 can then

be combined with the results of the type shown in Fig. 5 to obtain the strength

distribution for a prescribed flaw distribution (characterized by oto and m).
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An illustrative example for m = 5 and X0 = 0.03 is shown in Fig. 9. Here the

dotted and dashed lines correspond to the limiting cases described for Fig. 8. In

essence, the dotted lines represent the trends expected for the matrix itself: the

relationship is linear with a slope of 2.303 m. Similarly, the dashed lines can be

viewed as being representative of the behavior of a monolithic ceramic with a

toughness equivalent to the steady state composite toughness. This relationship is

also linear with a shape of 2.303 m, though it is shifted to higher values of strength.

The figure indicates that the main role of the crack bridging is to increase the

strength of the largest flaws, reducing the failure probability at low stresses relative

to that of the matrix. As a result, the strength distribution is narrowed.

5. EFFECT OF INTERFACE DEBONDING

The preceding sections have described the effects of the traction law,

characterized by the parameters 00 and 80, on the composite strength, without

consideration of the microstructural origins of these parameters. It has been

recognized, however, that the properties of the particle-matrix interface play a key

role in determining the values of these parameters [1,6,8]. Specifically, strong

interfaces result in minimal interface debonding during crack growth.

Consequently, the particles are subjected to a large plastic constraint, leading to an

elevation in the peak stress, (cO, coupled with a reduction in the limiting separation,

80. Conversely, weak interfaces lead to large debond lengths which in turn reduce

Go and increase So. In addition, the steady state toughness generally increases with

increasing debond length*. The purpose of the present section is to examine the

"It is recognized that when the interfaces are extremely weak, the particles completely debond from
the matrix and no toughness enhancement is obtained. This limiting case is not considered in the present
study.
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effects of interface debonding on the strength of such composites. It will become

evident that there exist optimal values of debond length that maximize composite

strength.

Here the traction law is computed using a geometric necking model similar to

the one initially developed by Mataga [7]. It is assumed that the particles are short

circular cylinders oriented perpendicular to the crack plane. The shape of the

ligaments during deformation is taken to be a paraboloid of revolution, and the

nominal stress computed from Bridgman's solution for a necking bar [15]. Details of

the model are presented in the Appendix. The corresponding traction law is then

approximated by the linear softening traction law, wherein the bridging parameters

ao and 8o are given by

/R= F1 (A/R) = 4.256 A/R (30a)

and = ( F2(/R) = 1.487 2 .0 4 4  1- _ (30b)fa 2A / R R~R

where I is the interface debond length, R is the particle radius, f is the volume

fraction of particles and (7 y is the yield stress of the particles. The effects of the

normalized debond length, A/R, on the bridging parameters a; and So are shown in

Fig. 10. An example of the traction law for A/R = 0.5 and the corresponding linear

approximation are shown in Fig. 11.

The steady state toughness is obtained by substituting Eqn. (30) into Eqn. (3b),

whereupon

vs + 
_____1

r02 17o (31)

7F:MS26(February 12, 1993)/9:20 AM/mef



20

Furthermore, the normalized flaw size is obtained by combining Eqns. (7), (12b) and

(30), resulting in

a = ,I J-Q= 410y
n = F S-oRJ sj (32)

The results of Eqns (31) and (32) are then combined with the results of Fig. 7(b) to get

the composite strength.

The variations in composite strength, S/S 0 , and steady-state toughness, Fs/ro,

with debond length, I/R, are plotted in Fig. 11. The relevant material parameters

were selected to be So/fay = 1, and -o/fayR = 0.1 and 0.2. The curves show that the

steady state toughness increases monotonically with debond length, whereas the

strength is maximized at an intermediate value. The reduction in strength beyond

the maximum is attributable to the loss in plastic constraint associated with

increased debonding.

6. CONCLUDING REMARKS

The design of composite microstructures for structural applications requires

consideration of a variety of composite properties, including fracture resistance,

strength and reliability. To date, most studies on metal-reinforced ceramics have

focused on the effects of crack bridging on fracture resistance. It is clear that

substantial improvements in fracture resistance can be obtained with modest

additions of ductile particles. Furthermore, the important relationships between

fracture resistance and the parameters characterizing the bridging traction law (Go

and bo/ have been well established1-7. The results of the present study show the

relevant trends in composite strength with the bridging law parameters, using two
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bridging laws that are appropriate to ductile particles. The effects of the initial flaw

size and the various composite properties (e.g. F0 , (TO, 5 o, E) on composite strength

can be incorporated into two non-dimensional parameters: a and X. Furthermore,

the composites can, in some instances, be considerably more flaw tolerant than

monolithic ceramics, resulting in narrower strength distributions. As a result, the

composites may be good candidates for applications in which flaws are likely to be

introduced during service (e.g. surface abrasion and impact).

The results for composite strength have also been combined with a geometric

necking model to evaluate the role of the interface debond length on the composite

strength and toughness. The steady state toughness increases monotonically with

debond length, whereas the strength is maximized at an intermediate value of

debond length. Such calculations could be used in the design of composites with

prescribed combinations of fracture properties, i.e. strength and toughness.

Two cautionary notes regarding the use of the present results should be made.

The first pertains to the assumption that the bridging tractions associated with the

particles can be smeared out over the crack faces. This assumption is valid only

when both the initial flaw size and the degree of crack growth through the

composite are large in relation to the spacing between the particles. Otherwise, an

alternate, more detailed approach is needed to model the process of crack bridging.

Secondly, in comparing the strength of the composite with that of the matrix, it has

been assumed that the flaw populations in the two are the same. However,

composite materials are generally more difficult to process than monolithic

ceramics; consequently, there is a tendency for producing larger flaws within the

composites. Such effects need to be considered in comparing the strength

characteristics of the composites with those of the matrix.
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APPENDIX

Here details of the geometric necking model are presented. The flow

behavior of the particles is assumed to obey the power hardening law

of /ly = (Al)

where af is the flow stress, n is the hardening exponent, ard Gy and Cy are the yield

stress and yield strain, respectively. Assuming the shape of the cylinders to be a

paraboloid of revolution, the relationship between the bridging traction a and the

crack opening 8 can be written as [7]

fa 1 p) [ in~ _P~j ( 2 n~ l (, 2 2______+ R) p(l-p)I1

EYR (l-p) 'e 2 w(P) j, (A.2)

S= 2[(o(p) -1], (A3)

with 0)(p) = [-P+ 8'P 2] (A4)

where f is the volume fraction of particles, I is the interface debond length, R is the

particle radius, and p is a non-dimensional parameter in the range 0 < p < 1.

The traction law defined by Eqns. (A2) to (A4) has been evaluated for debond

lengths in the range 0 < I/R < 0.5, using n = 0.25 and ECy = 0.003. The resulting

curves were subsequently approximated by the linear softening traction law, with Go

taken as the peak value of a, and 80 taken as

80 = 2w/a 0  (AS)
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where w is the area under the Y vs. 8 curve. One example of a traction law obtained

using the geometric model and the corresponding linear approximations is shown

in Fig. 11. The bridging parameters 0o and 80 so obtained are plotted against the

debond length, I/R, in Fig. 10. The curves have then been approximated by the

expressions in Eqn. (30).
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FIGURE CAPTIONS

Fig. 1 Schematic diagrams showing (a) crack bridging by ductile particles, and

(b) the corresponding fracture resistance curve.

Fig. 2 Schematic representations of the bridging traction laws and the linear

approximations.

Fig. 3 A bridged mode I crack in an infinite body.

Fig. 4 (a) Trends in applied stress with crack extension for a composite with a
rectilinear traction law. M The combinations of a and X for which af = ac.

Fig. 5 (a) Effect of the initial flaw size, (x, on the composite strength (rectilinear

traction law). (b) The results of (a) re-plotted to show the relationship

between strength and steady state toughness. Note that the SSB solution

provides a good approximation when a is large (2: 1), but strongly

overestimates the results when a is small.

Fig. 6 Trends in applied stress with crack extension for a composite with a linear

softening traction law. (Note that U / co reaches its maximum before the

onset of particle rupture).

Fig. 7 (a) Effect of the initial flaw size, a, on the composite strength (linear

softening traction law). (b) The results of Fig. 7(a) re-plotted to show the

relationship between strength and steady state toughness.

Fig. 8 The results of Fig. 5(a) plotted in logarithmic coordinates. The dotted lines

are the predictions of Eqn. (27) and the dashed lines of Eqn. (5a). M
Variation in flaw sensitivity with flaw size for the two curves shown in (a).

Fig. 9 Effects of crack bridging on the composite strength distribution.
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Fig. 10 Effects of debond length on the bridging parameters. The symbols represent

the results of the linear softening approximations; the lines are given by

Eqn (30).

Fig. 11 A comparison of the traction law computed from the geometric necking

model (Appendix) and the corresponding linear approximation. (e/R = 0.5).

Fig. 12 Effects of debond length, I/R, on the composite strength and steady state

toughness.
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ABSTRACT

Tension experiments performed on a 0/90 laminated SiC/CAS

composite at room temperature establish that this material is notch

insensitive. Multiple matrix cracking is determined to be the stress

redistribution mechanism. This mechanism is found to provide a particularly

efficient means for creating local inelastic strains, which eliminate stress

concentrations.
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1. INTRODUCTION

One of the most important attributes of ceramic matrix composites

(CMCs) is the existence of mechanisms that redistribute stress at strain

concentration sites, such as notches and holes. 1-5 These mechanisms involve

matrix cracking as well as fiber pull-out and bridging. The basic stress

redistribution phenomena are manifest as three classes of behavior(Fig. 1),

each associated with different contributions of matrix cracking and fiber pull-

out. 2,tA Class I behavior, dominated by fiber bridging and pull-out, has been

extensively documented and characterized through the development of large

scale bridging models1 ,5,7,8 (LSBM). Class III systems redistribute stress by

shear band formation. This phenomenon has also tecn analyzed 9 ,10 and

related to the in-plane shear strength of the material. Class II behavior has

received least attention, and yet, appears to be the most effective means of

stress redistribution. 4 The underlying phenomenon is the occurrence of

multiple matrix cracks, with minimal accompanying fiber failure. The intent

of the present article is to study matrix cracking and stress redistribution

around strain concentration sites in a class II system. Moreover, it has been

proposed that continuum damage mechanics (CDM) may be useful for

characterizing stress redistribution in such materials. 2,12 The present results

may provide perspective on the potential for CDM as an analysis procedure.

The material of choice is a NicalonTM silicon carbide fiber in a calcium

alumino silicate glass ceramic matrix (SiC/CAS) material. 13 The material is in

the form of a 0/90 laminate. The tensile characteristics and the constituent

properties are described elsewhere1 1,14,15 (Fig 2). In thi material, the matrix

crack spacing in the 0" plies changes with stress 11,14 (Fig. 3) in a manner that

fundamentally governs stress redistribution.
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2. EXPERIMENTAL APPROACH

2.1 Material

Plates of the SiC/CAS composite were provided by Corning.' 3 The

material was laid up in a 0/90 laminate structure with a nominal fiber

volume fraction, f = 0.36, and a fiber fraction aligned in each of the two

principle axes, f, = 0.18. The laminate structure consisted of 16 alternating 0 ',

90' layers with a double 90' center layer. The structure was densified by a hot

pressing technique. After densification, the total thickness of the composite

was - 3 mm. Optical microscopy established that the average thickness of each

ply to be = 180 i.m.

2.2. Test Procedures

Tensile specimens with a variety of holes and notches, located at both

the center and the edges (Fig. 4), were cut from the plates by diamond

machining. The ratio of the notch length to the sample width (ao/b) was

varied between 0.25 and 0.75. The specimens were then polished to remove

surface irregularities and to reveal the first underlying fiber layer in the

composite. Tensile tests were performed on these specimens, by using

gripping and alignment procedures described in other articles. 10,11

The tensile tests were carried out on a servohydraulic load frame. Strain

gages were used to measure localized strains at the notch tip and in the far

field. In some cases, the specimens were monotonically loaded to failure, in

order to document the influence of the notch on the ultimate tensile strength

(UTS), designated S*. In other cases, the tests were interrupted at various

fractions of the UTS, whereupon several measurements and observations

KJS s513M 4



were made concerning matrix crack accumulation, as well as stress

redistribution.

Matrix crack measurements were accomplished by using a surface replica

technique that duplicated the topography of the specimen surface Stress

redistribution was assessed using thermoelastic measurements, by means of a

technique involving stress pattern analysis through thermal emission

(SPATE). 4 In this technique, temperature gradients produced by cycling the

stress between 1.5 and 40 MPa at 10 Hz are measured and related to the first

stress invariant, Gkk.

Some tensile experiments were performed with sequential, repeated load

cycling, subject to full unloading and reloading. The properties of the

interface and the misfit strain were obtained from the associated hysteresis

loops and the permanent strain.15, 16,17,18 Finally, measurements of fiber pull-

out were made using scanning electron microscopy (SEM) on the failure

plane.

3. RESULTS

3.1 Monotonic Loading

Stress/strain curves obtained from edge-notched specimens revealed

appreciable non-linearity before failure (Fig. 2b). This non-linearity also

coincided with an increase in compliance. The ultimate tensile strength

(UTS) data are presented in terms of the ratio of the notched UTS, designated

S*, to the unnotched UTS, designated S. This ratio is plotted as a function of

the relative notch width, ao/b. The results are summarized in Fig. 4. It is

evident from these results that the 0/90 SiC/CAS material exhibits notch

KJS 5I13193 5



"insensitive behavior.1 In fact, there is evidence that some notch strengthening

may be occurring.

3.2 Damage Observations

Measurements of matrix cracks (Fig. 5) taken from samples tested to

failure, as well as from the replicas, indicate a relatively high crack density

close to the notch root. Generally, cracks first appear at the notch root (Fig. 6).

Then, as the load increases, the density of cracks increases. Thereafter, some of

the cracks extend throughout the cross section. Eventually, the saturatiun

crack spacing is approached near the notch root. The final average crack

spacing decreased as the ratio ao/b increased, such that the crack density in the

specimen with ao/b = 0.75 most closely resembled that found in an

unnotched tensile specimen after testing.

SPATE measurements revealed an initial stress concentration at the

notch root (Fig. 7 ), which diminished as matrix cracks appeared. These

measurements relate to the matrix cracks, which generate a compliance

gradient,4 that lowers the stress concentration, as well as redistributing the

stress across the remaining section. A comparison of SPATE line scans with

acetate replicas taken at the same damage level (Fig. 8) provides striking

evidence of the effect of multiple matrix cracking.

The fiber pull-out measurements and the hysteresis loop data (Figs. 9

and 10) can be used to provide information about the interface sliding stress,

T, and the residual stress, q. 11,14, 16-18 The sliding stress obtained from these

measurements (T = 20 MPa) is in reasonably good agreement with the values

previously reported for this material.1 1,14 However, the permanent strains

suggest a residual stress, q = 30 MPa, somewhat lower than that found

previously. 1 1 ,14 This difference reflects changes in processing conditions.

" KS/13 6



4. DISCUSSION

All of the above results indicate that the 0/90, SiC/CAS behaves as a

notch insensitive material in tension at room temperature. The most direct

evidence is given by the trend in the UTS with notch size (Fig. 4).

Confirmatory evidence is provided by the crack density distribution, as well as

the SPATE results.

The crack density within the 00 plies may be approximately related to the

ayy stress in those plies, in accordance with the curve shown in Fig. 3.

Notably, the crack density measured around the notch (Fig. 6) may be used

with Fig. 3 to estimate the (Tyy stress distribution. The results (Fig. 11) confirm

that the stress concentration is small prior to failure.

The SPATE measurements (Fig. 7) reflect the influence of the matrix

cracks on the elastic stiffness of the material around the notch. 4 The gradient

in stiffness caused by these cracks allows the 0 kk stress to redistribute and

eventually become uniform across the net section. Thus, the change in the

SPATE line scans with peak load provide an excellent qualitative picture of

how the tensile stresses are being redistributed across the net section.

However, as yet, they cannot be used to accurately measure the magnitude of

those stresses.

5. CONCLUSION

Some simple experiments have been performed which vividly

demonstrate that a 0/90 SiC/CAS composite is notch insensitive in tension at

room temperature. The behavior is related to the inelastic strains (Fig. 2) that

KJs S/i 7



arise from matrix cracking (Fig. 3), which redistribute stress around notches.

The matrix cracking mechanism appears to be particularly efficient for this

purpose, because stress concentrations can be completely eliminated, even

though the ductility is small, < 1% (Fig. 2). Since the matrix crack density is

relatively high at strain concentration sites, it should be possible to develop a

mechanism-based CDM approach1 2 which could be used to predict

redistribution effects. The available matrix cracking models,17,1 8 1 9 combined

with the constituent properties should be suitable for this purpose.
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FIGURE CAPTIONS

Fig. 1. The mechanisms of fiber pull-out and matrix cracking that lead to

stress redistribution in CMCs are identified with 3 classes of

behavior.

Fig. 2. Tensile stress-strain curve for 0/90 laminated SiC/CAS composite

indicating unload-reload hysteresis loops, (a) schematic,

(b) experimental results.

Fig. 3. The trend in crack density with stress for the 0' plies with applied

stress for 0/90 SiC/CAS.

Fig. 4. Effect of notch size on relative UTS, indicating that SiC/CAS is notch

insensitive in tension at room temperature. The inset shows a

schematic of the test specimen.

Fig. 5. A replica showing the matrix cracks that occur between two edge

notches.

Fig. 6. The crack density as a function of distance from the notch at differing

levels of net section stress, for a specimen with edge notches,

a0/b = 0.5.

Fig. 7. Typical results of SPATE measurements: (a) full-field temperature

distributions before and after matrix cracking (b) Line scans through

the notches at various damaging loads shows the effect of applied

stress on the distribution of (Gkk between the notches after loading to

0.7 UTS.

Fig. 8. A comparison of SPATE images at several loads with the replicas

taken at the same loads. The replicas record the crack density at each
damage level, while SPATE images reveal the hydrostatic stress

distribution.

Fig. 9. Fiber pull-out distribution measured from the failure plane

KJS 5113, 1



Fig. 10. Hysteresis loop data presented as a function of the peak stress with

the predicted line for tC = 20 MPa indicated.

Fig. 11. Estimate of the distribution of Gyy stre.ses between the notches based

upon crack density measurements (Fig. 3). Results shown for two

levels of net section stress.
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ABSTRACT

Fiber reinforced ceramic matrix composites depend upon inelastic

mechanisms to diffuse stress concentrations associated with holes, notches and

cracks. These mechanisms consist of fiber debonding and pullout, multiple

matrix cracking and shear band formation. In order to understand these effects,

experiments have been conducted on several double-edge-notched CMC's that

exhibit different stress redistribution mechanisms. Stresses have been measured
and mechanisms identified by using a combination of methods including: x-ray

imaging, edge-replication and thermoelastic analysis. Multiple matrix cracking

was found to be the most effective mechanism.
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1. INTRODUCTION

One of the major attributes of fiber reinforced ceramic matrix composites

(CMC's) is the existence of inelastic mechanisms that allow stress redistribution

around strain concentration sites such as notches, holes, attachments, etc.1- 4

These mechanisms, analogous to plasticity in metals, involve combinations of

matrix cracking and fiber pull-out.1 ,6-10 In the presence of notches and holes,

three damage phenomena have been found, based on matrix cracking and fiber

pull-out (Fig 1). Others may, of course, exist. The operative damage class

depends on the magnitudes of non-dimensional parameters which combine

interface, fiber, and matrix properties.1 ,7,8,10 The intent of the present article is

to provide an experimental assessment of stress redistribution effects around

notches in CMC's that exhibit these damage phenomena.

CMC's exhibit a variety of tensile (Fig 2a) and shear (Fig 2b) stress/strain

curves,1,10,14 with varying amounts of inelastic strain prior to failure. One

purpose of the present study is to attempt to relate features of the inelastic strain

measured in tensile and shear tests to the stress redistribution behavior. This

would be achieved through an understanding of the inelastic mechanisms and

their role in governing the dominant mode of damage (Fig I).
The importance of stress redistribution is manifest in the notch sensitivity,

which is a key factor affecting the practical utility of a structural material. 11,12

Notches and holes are a source of strain concentration. The corresponding stress

concentration depends upon the material response. One limit obtains for elastic

materials. In such materials, the stress concentrations are severe, resulting in

extreme notch sensitivity. When inelastic mechanisms operate, the stresses

redistribute in regions of large strain concentration and reduce the notch

sensitivity. In some cases, the stress concentration can be completely

eliminated, resulting in a notch insensitive material.3,13 More generally, the

behaviors can be presented on a notch sensitivity diagraml1,12 (Fig. 3). In this

diagram, the ordinate is a measure of the tensile strength normalized by the un-

notched strength, while the abscissa is the notch/hole size (2ao) relative to the

plate width (2b). Each line represents a measure of the inelastic displacement

permitted by the material near the notch tip, prior to failure. This measure is

given by the ratio of the notch length to the length of the inelastic zone. 1I

Related stress redistribution mechanisms are known to occur in polymer

matrix composites (PMC's), particularly upon cyclic loading. 13-21 Studies on

Mackin ct al: Notch Sensitivity and Stress Redistribution in CMC's
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PMCs have established a precedent for a test methodology 15-21 that can be used

to monitor damage in CMCs and thereby measure effects on the stress

distribution. The methods include the use of Moir6 interferometry to measure

strain distributions, thermoelastic measurements to assess stress distributions,15-
19 x-ray imaging with dye penetration to highlight damage, and replication

methods to examine matrix cracking. 15-21 All of these methods may be

augmented by conventional optical and scanning electron microscopy. In the

present study, a combination of these methods is used to study stress

redistribution in three CMCs: SiC/CAS, C/C and SiC/SiC.

The experimental procedure given principal emphasis is the thermoelastic

emission method, which provides a measure of the stress distribution. 15-19 ,22-25

A brief synopsis of this method is given in the next section, prior to a description

of the experiments and their analysis.

2. STRESS ANALYSIS BY THERMOELASTIC EMISSION

Stress Pattern Analysis from Thermoelastic Emission (SPATE ) is a
technique that relates instantaneous changes in the hydrostatic stress at any

location in a material to instantaneous changes in local temperature. 22-25 The

method has been used extensively to evaluate stress distributions in monolithic

metals and polymer matrix composites. 15-19 The underlying phenomenon

concerns the temperature change that occurs when an elastic body is subjected to
hydrostatic deformation under adiabatic conditions. The fundamental

thermodynamic relation for the temperature change TP and its dependence on the

hydrostatic stress rate a, is given by (see Appendix):22-29

0=-Knr + Krn0+I (T)

where Km is the isothermal bulk modulus, Cv is the specific heat at constant

volume, D3 is the bulk thermal expansion coefficient, p0 is the density, and To is

the mean temperature.

Mackin et a]: Notch Sensitivity and Stress Redistribution in CMCs
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The sum in parentheses is dominated by the second term, resulting in the

approximation,

PTo (2)

Typically, the material constants are combined to define a thermoelastic

'constant,' xc given by,

p 0Cv (3)

In the SPATE method a sinusoidal stress input is used, which creates a thermal
response at both the first and second harmonics. For materials, such as CMC's,
the modulus is a weak function of temperature. Upon applying a cyclic
hydrostatic stress amplitude, AM~kk, the temperature change, AT, at the first
harmonic, is given by,20-25

AT = KTooAsin (wt) (4)

where co is the frequency and t is time. A key feature of the SPATE procedure is
that the spatial variation in temperature, T(x,y), relates to the hydrostatic stress
distribution. Ao(x,y).et Moreover, when matrix damage occurs, the properties
which influence K, (namely po, Cv, and 03) are unchanged and eqn (4) still applies.

For typical values of the strain range, the temperature changes expected
for CMC's are, at most, = 0.1°C. Very sensitive measurements are thus required.
Furthermore, to satisfy the adiabatic assumption, the thermometry must be in
thermal equilibrium with the test specimen.

tt For a composite, the material constants that relate stress and temperature involve combinations of the

properties of the fiber and the matrix, leading to anisotropy in the thermoelastic 'constant', ic. The

magnitude can be obtained either by calibration or calculation. 22.23

Mackin et al: Notch Sensitivity and Stress Redistribution in CMCs
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To satisfy these requirements, recent experimental techniques use the principal of

black body radiation and infrared thermome'ry, wherein the photon flux is

measured by a detector sensitive to infrared radiation.*22,23 In practice, the

detector response is the sum of the emitted photons and the background.

Improvements in signal to noise are made by averaging the sample many times

at a given location. This is accomplished by locking the detector data acquisition

onto the frequency of the applied cyclic strain. A commercial system which

embodies these conceptst has been used to measure the photon flux emitted

from the test specimens. The system consists of a mercury doped CdTe detector

affixed to a liquid nitrogen cooled dewar. Th,- detector is housed within a

camera body to reduce the effect of spurious ,,ia.,ation. A collimator and lenses

at the inlet to the camera body focus the emitted IR onto the detector. The

collimated infrared issues from a location on the specimen of either 200 or 400

micron diameter at a working distance of 25cm, and can detect temperature

differences as small as 0.001°C. Before testing, specimens are coated with a thin
layer of commercial flat black paint to provide uniform emission from the sample

surface. Background ER is reduced by placing a flat black card behind the

specimen.
The experiments are conducted by applying a 10Hz, uniaxial cyclic load,

creating a 10Hz fluctuation in the thermoelastic response. The frequency is

chosen to minimize the effects of tlLermal conduction from the measurement zone

during the measurement time, thereby creating adiabatic conditions. 22,23 The
maximum load is usually chosen to correspond to a stress less than the elastic

limit, while the minimum is chosen to ensure specimen alignment. A lock-in

amplifier controls the data acquisition system by locking the detector output to

the frequency of the applied load. The phase lag is automatically adjusted by
locking into the peak signal difference at the test frequency. Locking into the

applied cyclic load performs two basic functions: It correlates the thermal signal

to the applied stress, and it eliminates the effect of absolute temperature changes

that may be occurring in the specimen.

"Typical IR detectors have a band gap of - O.leV, corresponding to photon wavelengtis <14 microns.

t SPATE 9000 IR imaging system by Ometron

Mackin et al: Notch Sensitivity and Stress Redistribution in CMC's
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3. EXPERIMENTAL PROCEDURES

Double edge-notched test coupons were fabricated from panels of 0/90

composites: C/C, SiC/SiC and SiC/CAS. These materials and their properties
are described elsewhere and summarized in figure 3. Notches were cut into the
sides by using a diamond blade, resulting in a nominal notch root radius of 50
microns, and having relative notch depths, a0 /b = 0.5. Alu -inum tabs were
bonded onto the ends of the test coupons for gripping purposes. The specimens
were aligned and clamped using hydraulic grips. A strain gage was attached at a
location remote from the reduced section, in order to allow monitoring of the far

field strain. The strain gage was conn•zted to a dynamic strain amplifier, the
output of which was used to calibrate the thermal emission.

Each test was interrupted at various points along the stress-strain history

in order to assess the stress distribution, as well as the development of damage
around the notches. Stress redistribution was quantified using the thermoelastic

emission procedures described above. Damage was characterized using both
radiographic procedures and acetate tape replicas. The radiographs were

obtained as follows: While urder load, . zinc iodide penetrant was dispersed
onto the specimen. The specimens were then unloaded, removed from the grips,
and placed into an x-ray system. The penetrant enters into the damaged region

and provides absorption contrast for an x-ray image of the dam,•ged region.
Acetate repiicas were obtained while the load was maintairýd in order to

hold the matrix cracks open. Sections of replication tape were cut and held over

the notch root region, and a small amount of acetone applied above the tape.
The replicas were dried, rernc,,-d arn examined using optical microscopy.

4. RESULTS
4.1 SPATE Calibration

Before proceeding with measurements, a SPATE calibration experiment

was conducted on an edge notched steel specimen. A low resolution full field

scan (Fig 4) combined with line scans demonstrates the thermal response. For
purposes of analysis, the temperature field is calibrated to the strain gage
response in the far field by comparing thermoelastic and strain gage signals and

adjusting the SPATE output accordingly. Several items are notable: (i) The

specimen was not perfectly aligned, resulting in bending stresses. This is evident

Mackin ei al: Notch Sensitivity and Stress Redistribution in CMC's



from the slope of the line scans through the far field. (ii) Fluctuations in the far

field signal (10% of the signal) arise from polishing scratches, variations in

surface emissivity, and thermal fluctuations in the background. (iii) Edge effects

appear on scans made in the vicinity of the notch and at the sample edges. The

consequence is that a finite edge region, approximately 400pam in width, cannot

be analyzed. The edge effect arises for two reasons: First, when scanning near an

edge, the detector spot is partially off the specimen. Second, as the specimen is

cyclically loaded, the edges of the notch move relative to the detector.

Stress concentration factors are derived from the temperature

measurements by comparing the temperatures at the notch root with the

temperature in the far-field, which relates directly to the known far field stress.

For this purpose, it is recalled that the SPATE signals relate to the hydrostatic

stress. Finite element solutions (Fig 5) reveal that the stresses are virtually

uniaxial'" within one notch width of the root. Furthermore, measurements made

in this location -- e unaffected by the edge effect. Consequently, it is

straightforward to relate the temperature measured in this region to the far field

temperature in order to evaluate the concentration of ayy stress near the notch.
The experimental values of ayy measured at this location are superposed onto

the finite element results (Fig 5). Upon noting that the spot size is 400pLm, it is

apparent that the SPATE measurement gives satisfactory estimates of the stress

concentration.

4.2 CMC Measurements

Measurements made on the notched C/C material provide a sequence of

SPATE images (Fig 6a), obtained at several prior peak load levels. These are

accompanied by radiographic images of the same specimens, (Fig 6b). This

material develops shear bands perpendicular to the notch which are comprised

of multiple matrix cracks in a manner characteristic of a Class III system (Fig 1).

Both SPATE and radiographic images illustrate this effect. The low resolution

SPATE scan (Fig 6c) reveals a dramatic elongation in the notch root field,

coincident with the development of the shear bands. Such bands form in this

composite because of its relatively low shear strength (Fig 2b). A sequence of line

scans connecting the notches (Fig 7) establish that there is a reduction in the

ti 4 XX = 0
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magnitude of the notch root temperature as the shear bands extend.
Furthermore, there is a decrease in the temperature gradient, consistent with

stress redistribution across the net section. The results are further quantified by
plotting a measure of the stress concentration factor (SCF) as a function of shear

band length (Fig 8). This SCF is defined as the ratio of the temperature along the
notch plane, measured 400g.m from the notch root, to the far field temperature.

As noted above, the stress at this location near the notch should be largely
uniaxial. Consequently, this ratio of temperatures is a measure of the oy stress
concentration ahead of the notch. It is evident that this SCF diminishes as the
shear band length increases, consistent with finite element calculations 2 (fig 9).

A similar series of experiments conducted on the SiC/CAS material
revealed different characteristics (figs 10-11). The SPATE images (fig 10) indicate

that the zone of highest temperature moves away from the notch root toward the
specimen center as the peak load increases. Moreover, at the highest load,

SPATE scans (fig 11) show that the temperature is essentially uniform within the
net section, with only random fluctuations remaining. These observations imply

that the stresses are uniform and equal to the net section stress. Such
observations are consistent with the notch insensitive behavior found for this

material (fig 2). Surface replicas revealed a multiplicity of matrix cracks
emanating from the notch (fig 10). There was no evidence of shear bands in this
material. This evidence classifies the SiC/CAS material as a class U composite, in

which stress redistribution is achieved through the inelastic deformation
provided by multiple matrix cracks.

SPATE images and line scans obtained for the SiC/SiC material(Figs 12

and 13) show some stress redistribution. However, a stress concentration persists
throughout. The damage mechanism operating in this material is presently
unknown. Whichever rnechanism operates, it is clearly less effective in stress
redistribution than the shear band and multiple matrix cracking mechanisms that

occur in the C/C and SiC/CAS composites, respectively.

5. ANALYSIS AND INTERPRETATION

The combination of SPATE measurements with x-ray and replicated
images indicate that matrix cracking damage, occurring as either shear bands or

multiple matrix cracks, modify the stress around notches. To further understand

the implications of the SPATE results, it is recalled that the measurements are

Mackin et al: Notch Sensitivity and Stress Redistribution in CMCs
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made at small stress levels, following the introduction of damage at larger

stresses. Consequently, the damage must influence the stress/strain laws

applicable at small strains. Unloading/reloading measurements conducted in

both tension and shear have indicated that the unloading modulus diminishes as

a consequence of matrix crack damage (Fig 14). The damaged material would be

located primiiarily ahead of the notch in the SiC/CAS composite, but normal to

the notch, within the shear bands, in the C/C composite. The diminished

modulus is regarded as the phenomenon that causes the stresses inferred from

the SPATE measurements to differ from the elastic solution. It is proposed that

the damage creates a gradient in the elastic modulus such that the stresses near

the notch are reduced, as sketched in Fig 15. Moreover, results for stress

redistribution in materials subject to shear bands (Fig 9) indicate features

comparable to the measurements performed on the C/C composite. A more

detailed understanding of stress redistribution would require that SPATE

measurements be made over a range of superposed mean stresses, thereby

illuminating the non-linear stress-strain behavior in the damaged regions. Such

measurements would provide constitutive relations that could be used in stress

redistribution calculations.

SUMMARY

SPATE measurements, in conjunction with x-ray and replica observations,

indicate the existence of damage mechanisms that result in local gradients in

elastic modulus. These gradients in modulus cause stress redistribution. The

magnitudes of these effects at small strains have been established from SPATE

measurements. These measurements have also revealed differing stress

redistribution behavior for each of the three composite systems, associated with

different damage mechanisms. The damage mechanisms themselves, have been

described elsewhere. 1-5 While the present study affirms that damage

mechanisms occur, which change the local properties of the composite, 30-32

quantitative assessment of stress redistribution requires further research. Most

importantly, the stress redistribution which arises at peak loads will be more

extensive than that found at small strain by the SPATE measurement, because of

the additional contributions to the inelastic strain caused by sliding at the

fiber/matrix interface.

Mackin et &I: Notch Sensitivity and Stress Redistribution in CMC's



II

APPENDIX

The Thermoelastic Phenomenon

Thermoelasticity describes the relationship between applied stress and

temperature in an elastic body. The thermal and mechanical state is given by

the first law of thermodynamics 28

dU = dQ + PdV (Al)

where the change in internal energy, dU, is related to the heat conduction, dQ,

and the work performed on the body, PdV. Upon combining the first and

second laws,28

U0 = TS + Viij (A2)

The dilatationalt and deviatoric strain-rates are related, respectively, to the

corresponding stress rates by26-28

e=-- + t
Km (A3)

and

eij = 2•m
ej -(A4)

2Gm(M

where Km is the adiabatic bulk modulus, Gm is the adiabatic shear modulus, and

13 is the coefficient of thermal expansion,. By using the Helmholtz free energy

F = U -TS (A5)

the time derivative is

f = 0U- TS- ST (A6)

t For convenience the subscript kk is omitted on both the dilatational stress and strain.

Mackdn et al: Notch Sensitivity and Stress Redistribution in CMCs
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Upon combining (A2) and (A6)

P = V(OF + sij{ij) - ST (A7)

Also, the total differential is

dF = V(ade + sijdeij)-SdT (A8)

Assuming that strain and temperature are the independent variables, both the

free energy and entropy are expressed as functions of these variables,

F = F(eeij,T) (A9)

S = S(eeijT) (AlO)

From elasticity,

o= Kme - KmP3T (Alla)

and

sij i
J G - m (Allb)

Equations (A9) through (Al l), in conjunction with (A8) can be used to derive a

functional relationship between changes in stress and changes in temperature.

The total differential of the Helmholtz free energy and the entropy (from A9 and

A10) is given by

aF aF aF
dF = +-d --e + -de -^-d+

E -ij aT (A12)

and

is as as
dS = - de + eij + --dT

Mesvi aT (A13)

Mackin et &I: Notch Sensitivity and Stress Redistribution in CMC's
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Comparing (A12) and (A8), the partial derivatives of the Helmholtz free energy

are

aF aF aFýe ' 1ei0 = Vsij and =- S
(A14)

These relationships can be used to determine the partial derivatives of the

entropy. Using the fact that F is a perfect differential and 26-29

aF

the partials of S can be determined as follows:

DS a iF D cF
Te - =T The (A15)

However, from relations (A14), by assuming constant volume (small strain), and

elastic constants independent of temperature,

aF
(A16)

such that,

S(A17)

Using (Alla) as the functional form of a, the partial with respect to temperature

is

aa -Km[
TT (A18)

leading to

as KmIV
-e =(A19)

Mackin et a]: Notch Sensitivity and Stress Redistibution in CMC's
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In a similar manner,

as a--=,9% "IT =0o
5;ei- aT (A20)

The differential of heat is related to the specific heat at constant volume, and

temperature through 27

dQ= pOVCvdT (A21)

and with entropy defined as28

TdS = dQ (A22)

then,
as p0VC,
5T T (A23)

Using (A19, A20 and A23 ) in (A13) gives an expression for the total differential

of the entropy in terms of the independent variables

dS = P°-d T + Kmi Vde
T (A24)

Multiplying by T, and taking the time rate of change of the differentials gives

TS = poVCa + KmPMTh (A25)

Under adiabatic conditions, since TS = Q =0, equation (A25) reduces to an

expression for the dilatational strain rate as a function of temperature,

=-poC

KmP3T (A26)

Mackin et a]: Notch Sensitivity and Stress Redistribution in CMC's
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Using (A3) in (A26) gives an expression for the hydrostatic stress (eqn 1)

This equation relates temperature changes in an elastic body to changes in the
hydrostatic stress. The second term in brackets is much larger than the first,
resulting in a simpler approximation that, typically, differs in value by less than

0.6%, (eqn 2)

o POCvT

The important assumptions that lead to this eouation are: (i) a reversible process,
(ii) adiabatic conditions, (iii) e, eij and T are independent variables, (iv) constant
volume (small strains), and (v) the elastic constants do not change with
temperature.
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LIST OF FIGURES

Figure 1. Three classes of damage have been identified in CMC's,: (i)

propagation of a single Mode I crack (Class I), (ii) multiple matrix
cracking (Class II), and (iii) shear band formation (Class lI).

Figure 2. Representative stress-strain responses for each of the composites

tested in this study: (a) tension and (b) shear.

Figure 3. A materials notch sensitivity depends upon the size of the inelastic
zone, as measured by the ratio of notch depth to inelastic zone size:

A is the notch sensitivity index. 1,11,12

Figure 4. A SPATE scan on a model test specimen shows the stress

concentrating effect of the notches. The asymmetry is due to
specimen misalignment, resulting in bending stress, as evidenced in
the slopes of both the notch root and far-field line scans.

Figure 5. A comparison of FEM calculations and SPATE measurements of the

stress concentration factor. Edge effects during scanning preclude
measurements within an edge zone equal to the spot size (400mm).
The effect of averaging over a spot size 400mm from the notch root

is shown by the dashed lines.

Figure 6. A series of images taken during interrupted testing of the C/C

composite shows the development of shear bands. (a) Low
resolution SPATE image shows the overall effect of shear bands on
the stress distribution. (b) Higher resolution image before shear
band formation, (c) after shear bands reached l/a=1, (d) x-ray dye
penetrant image (courtesy of F. Heredia and S. M. Spearing).

Figure 7. SPATE line scans indicating the temperature distribution across the
net section. (C/C specimen).

Figure 8. The stress concentration factor (SCF) varies with shear band size
(1/a). The linear curve-fit is representative of the trend, and can not

be used to extrapolate beyond the existing data.
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Figure 9. Stress redistribution along the notch plane by shear bands having a

shear strength, t = 5OMPa.

Figure 10. SPATE images (a~b, c) and corresponding surface replicas (d, e, f)
taken following loading of the SiC/CAS composite. These images

show stress redistribution due to multiple matrix cracking.

Figure 11. SPATE line scans extracted from the full field scans shown in

Figure 10 graphically illustrate stress redistribution across the net

section.

Figure 12. SPATE images obtained for the SiC/SiC material.

Figure 13. Overlay of line scans connecting the notches (a) as-received

specimen, (b) after loading to 160MEPa.

Figure 14. The unloading modulus decreases with increasing matrix crack

density.. (Data from SiC/CAS and SiC/SiC courtesy of jean-Marc

Domergue).

Figure 15. A gradient in a materials' modulus results in stress redistribution.
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